論文の概要: Reconstructing 3D Flow from 2D Data with Diffusion Transformer
- arxiv url: http://arxiv.org/abs/2502.02593v1
- Date: Fri, 20 Dec 2024 13:19:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-02 06:49:55.153602
- Title: Reconstructing 3D Flow from 2D Data with Diffusion Transformer
- Title(参考訳): 拡散変圧器を用いた2次元データからの3次元流れの再構成
- Authors: Fan Lei,
- Abstract要約: 2次元PIVデータから3次元流れ場を再構成するトランスフォーマー方式を提案する。
モデルに2次元平面の位置情報を埋め込むことで,任意の組み合わせの2次元スライスから3次元流れ場を復元することができる。
本研究では,2次元データから3次元流れ場を効率的に高精度に再構成し,現実的な結果が得られることを示す。
- 参考スコア(独自算出の注目度): 0.6798775532273751
- License:
- Abstract: Fluid flow is a widely applied physical problem, crucial in various fields. Due to the highly nonlinear and chaotic nature of fluids, analyzing fluid-related problems is exceptionally challenging. Computational fluid dynamics (CFD) is the best tool for this analysis but involves significant computational resources, especially for 3D simulations, which are slow and resource-intensive. In experimental fluid dynamics, PIV cost increases with dimensionality. Reconstructing 3D flow fields from 2D PIV data could reduce costs and expand application scenarios. Here, We propose a Diffusion Transformer-based method for reconstructing 3D flow fields from 2D flow data. By embedding the positional information of 2D planes into the model, we enable the reconstruction of 3D flow fields from any combination of 2D slices, enhancing flexibility. We replace global attention with window and plane attention to reduce computational costs associated with higher dimensions without compromising performance. Our experiments demonstrate that our model can efficiently and accurately reconstruct 3D flow fields from 2D data, producing realistic results.
- Abstract(参考訳): 流体流動は様々な分野において重要な物理問題である。
流体の非常に非線形でカオス的な性質のため、流体に関連した問題を解析することは極めて困難である。
計算流体力学(CFD、Computational fluid dynamics)は、この解析に最適なツールであるが、特に3次元シミュレーションにおいて重要な計算資源を必要とする。
実験流体力学では、PIVコストは次元によって増加する。
2D PIVデータから3Dフローフィールドを再構築することで、コストを削減し、アプリケーションシナリオを拡張することができる。
本稿では,2次元流れデータから3次元流れ場を再構成する拡散変換器を用いた手法を提案する。
モデルに2次元平面の位置情報を埋め込むことで,任意の組み合わせの2次元スライスから3次元流れ場を復元し,柔軟性を向上させる。
我々は、性能を損なうことなく、高次元の計算コストを削減するために、グローバルな注意を窓と平面の注意に置き換える。
本研究では,2次元データから3次元流れ場を効率的に高精度に再構成し,現実的な結果が得られることを示す。
関連論文リスト
- Factorized Implicit Global Convolution for Automotive Computational Fluid Dynamics Prediction [52.32698071488864]
非常に大きな3DメッシュのCFD問題を効率的に解く新しいアーキテクチャであるFactized Implicit Global Convolution (FIGConv)を提案する。
FIGConvは、既存の3DニューラルCFDモデルよりも大幅に改善された2次複雑性の$O(N2)$を達成する。
業界標準のAhmedボディデータセットと大規模DrivAerNetデータセットに対するアプローチを検証する。
論文 参考訳(メタデータ) (2025-02-06T18:57:57Z) - Motion-aware 3D Gaussian Splatting for Efficient Dynamic Scene Reconstruction [89.53963284958037]
動的シーン再構築のための新しい動き認識拡張フレームワークを提案する。
具体的には,まず3次元ガウス運動と画素レベルの流れの対応性を確立する。
より厳密な最適化問題を示す先行的な変形に基づくパラダイムに対して,過渡対応変形補助モジュールを提案する。
論文 参考訳(メタデータ) (2024-03-18T03:46:26Z) - From Zero to Turbulence: Generative Modeling for 3D Flow Simulation [45.626346087828765]
本稿では, 乱流シミュレーションを, 初期流れの状態に依存することなく, 可能な全ての乱流状態の多様体を直接学習する生成タスクとして提案する。
生成モデルでは、未知の物体による乱流の分布を捉え、下流アプリケーションのための高品質で現実的なサンプルを生成する。
論文 参考訳(メタデータ) (2023-05-29T18:20:28Z) - FR3D: Three-dimensional Flow Reconstruction and Force Estimation for
Unsteady Flows Around Extruded Bluff Bodies via Conformal Mapping Aided
Convolutional Autoencoders [0.0]
本稿では,畳み込み型自己エンコーダに基づくニューラルネットワークモデルFR3Dを提案する。
FR3Dモデルは数ポイントの誤差で圧力と速度の成分を再構成する。
論文 参考訳(メタデータ) (2023-02-03T15:13:57Z) - DreamFusion: Text-to-3D using 2D Diffusion [52.52529213936283]
テキストと画像の合成の最近の進歩は、何十億もの画像と画像のペアで訓練された拡散モデルによって引き起こされている。
本研究では,事前訓練された2次元テキスト・ツー・イメージ拡散モデルを用いてテキスト・ツー・3次元合成を行うことにより,これらの制約を回避する。
提案手法では,3次元トレーニングデータや画像拡散モデルの変更は必要とせず,事前訓練した画像拡散モデルの有効性を実証する。
論文 参考訳(メタデータ) (2022-09-29T17:50:40Z) - Benchmarking of Deep Learning models on 2D Laminar Flow behind Cylinder [0.0]
直接数値シミュレーション(DNS)は計算流体力学におけるタスクの1つである。
これら3つのモデルをオートエンコーダ方式でトレーニングするため、データセットは入力としてモデルに与えられたシーケンシャルフレームとして扱われる。
我々は、最近導入されたTransformerと呼ばれるアーキテクチャが、選択したデータセットでそのアーキテクチャを著しく上回っていることを観察する。
論文 参考訳(メタデータ) (2022-05-26T16:49:09Z) - Positional Encoding Augmented GAN for the Assessment of Wind Flow for
Pedestrian Comfort in Urban Areas [0.41998444721319217]
本研究は,CFDを用いた3次元フローフィールドの計算から,建物のフットプリント上の2次元画像から画像への変換に基づく問題まで,歩行者の高さレベルでのフローフィールドの予測に至るまでの課題を言い換える。
本稿では,画像から画像への変換タスクの最先端を表現したPix2PixやCycleGANなど,GAN(Generative Adversarial Network)の利用について検討する。
論文 参考訳(メタデータ) (2021-12-15T19:37:11Z) - Data-Driven Shadowgraph Simulation of a 3D Object [50.591267188664666]
我々は、数値コードをより安価でプロジェクションベースのサロゲートモデルに置き換えている。
このモデルは、数値的な方法で必要となるすべての前の電場を計算することなく、所定の時間で電場を近似することができる。
このモデルでは, シミュレーションパラメータの狭い範囲におけるデータの摂動問題において, 高品質な再構成が示されており, 大規模な入力データに利用することができる。
論文 参考訳(メタデータ) (2021-06-01T08:46:04Z) - Displacement-Invariant Matching Cost Learning for Accurate Optical Flow
Estimation [109.64756528516631]
学習のマッチングコストは、最先端のディープステレオマッチング手法の成功に不可欠であることが示されている。
本稿では,5次元特徴量構築の要件を回避できる新しい手法を提案する。
提案手法は,各種データセットにおける最先端の精度を実現し,Sintelベンチマークにおける全光フロー法より優れる。
論文 参考訳(メタデータ) (2020-10-28T09:57:00Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
大規模運転シーンのLiDARセマンティックセマンティックセグメンテーションのための最先端の手法は、しばしば2D空間の点雲を投影して処理する。
3D-to-2Dプロジェクションの問題に取り組むための簡単な解決策は、3D表現を保ち、3D空間の点を処理することである。
我々は3次元シリンダー分割と3次元シリンダー畳み込みに基づくフレームワークをCylinder3Dとして開発し,3次元トポロジの関係と運転シーンの点雲の構造を利用する。
論文 参考訳(メタデータ) (2020-08-04T13:56:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。