論文の概要: SEAL: Speech Embedding Alignment Learning for Speech Large Language Model with Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2502.02603v1
- Date: Sun, 26 Jan 2025 15:04:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-09 05:18:35.502034
- Title: SEAL: Speech Embedding Alignment Learning for Speech Large Language Model with Retrieval-Augmented Generation
- Title(参考訳): SEAL:検索機能付き大規模言語モデルのための音声埋め込みアライメント学習
- Authors: Chunyu Sun, Bingyu Liu, Zhichao Cui, Anbin Qi, Tian-hao Zhang, Dinghao Zhou, Lewei Lu,
- Abstract要約: 本稿では,中間テキスト表現の必要性を解消する統合埋め込みフレームワークを提案する。
本モデルでは,従来の2段階法に比べて高い精度でパイプライン遅延を50%削減する。
- 参考スコア(独自算出の注目度): 10.828717295018123
- License:
- Abstract: Embedding-based retrieval models have made significant strides in retrieval-augmented generation (RAG) techniques for text and multimodal large language models (LLMs) applications. However, when it comes to speech larage language models (SLLMs), these methods are limited to a two-stage process, where automatic speech recognition (ASR) is combined with text-based retrieval. This sequential architecture suffers from high latency and error propagation. To address these limitations, we propose a unified embedding framework that eliminates the need for intermediate text representations. Specifically, the framework includes separate speech and text encoders, followed by a shared scaling layer that maps both modalities into a common embedding space. Our model reduces pipeline latency by 50\% while achieving higher retrieval accuracy compared to traditional two-stage methods. We also provide a theoretical analysis of the challenges inherent in end-to-end speech retrieval and introduce architectural principles for effective speech-to-document matching. Extensive experiments demonstrate the robustness of our approach across diverse acoustic conditions and speaker variations, paving the way for a new paradigm in multimodal SLLMs retrieval systems.
- Abstract(参考訳): 埋め込みベースの検索モデルは、テキストおよびマルチモーダル大規模言語モデル(LLM)アプリケーションのための検索拡張生成(RAG)技術において、大きな進歩を遂げている。
しかし,音声ラージ言語モデル(SLLM)では,これらの手法は2段階のプロセスに限られており,音声認識(ASR)とテキストベースの検索が組み合わされている。
このシーケンシャルアーキテクチャは、レイテンシとエラーの伝播に悩まされている。
これらの制約に対処するため,中間テキスト表現の必要性を解消する統合埋め込みフレームワークを提案する。
具体的には、このフレームワークは、別個の音声とテキストエンコーダを含み、次に、両方のモダリティを共通の埋め込み空間にマッピングする共有スケーリング層が続く。
本モデルでは,従来の2段階法に比べて高い精度でパイプライン遅延を50%削減する。
また、エンドツーエンドの音声検索に固有の課題を理論的に分析し、効果的な音声文書照合のためのアーキテクチャ原則を導入する。
マルチモーダルSLLM検索システムにおいて,様々な音響条件と話者変動にまたがるアプローチの堅牢性を示す実験を行った。
関連論文リスト
- Advancing Multi-talker ASR Performance with Large Language Models [48.52252970956368]
対話シナリオにおける複数話者からの重複音声認識は、音声認識(ASR)において最も難しい問題の一つである。
本稿では,事前学習した音声エンコーダとLLMを利用したマルチストーカーASRのためのSOTアプローチを提案する。
提案手法は,シミュレーションデータセットLibriMixにおける従来のAEDに基づく手法を超越し,実世界のデータセットAMIの評価セット上で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-08-30T17:29:25Z) - Multi-Modal Retrieval For Large Language Model Based Speech Recognition [15.494654232953678]
我々は,kNN-LMとクロスアテンション手法の2つのアプローチによるマルチモーダル検索を提案する。
音声に基づくマルチモーダル検索はテキストベースの検索よりも優れていることを示す。
我々は,Spoken-Squad質問応答データセットを用いて,最先端の認識結果を得る。
論文 参考訳(メタデータ) (2024-06-13T22:55:22Z) - Fine-tuning CLIP Text Encoders with Two-step Paraphrasing [83.3736789315201]
パラフレーズに対するCLIPモデルの表現を強化するための簡単な微調整手法を提案する。
ParaCLIPと呼ばれる我々のモデルは、様々なタスクでベースラインCLIPモデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2024-02-23T06:11:50Z) - Improved Contextual Recognition In Automatic Speech Recognition Systems
By Semantic Lattice Rescoring [4.819085609772069]
本稿では,意味的格子処理によるASRシステム内における文脈認識の高度化のための新しい手法を提案する。
提案手法は,隠れマルコフモデルとガウス混合モデル(HMM-GMM)とディープニューラルネットワーク(DNN)モデルを用いて,精度を向上する。
本稿では,実験分析によるLibriSpeechデータセット上でのフレームワークの有効性を示す。
論文 参考訳(メタデータ) (2023-10-14T23:16:05Z) - High-Fidelity Speech Synthesis with Minimal Supervision: All Using
Diffusion Models [56.00939852727501]
最小教師付き音声合成は、2種類の離散音声表現を組み合わせることでTSを分離する。
非自己回帰フレームワークは、制御可能性を高め、持続拡散モデルは、多様化された韻律表現を可能にする。
論文 参考訳(メタデータ) (2023-09-27T09:27:03Z) - Learning Speech Representation From Contrastive Token-Acoustic
Pretraining [57.08426714676043]
本研究では、2つのエンコーダを用いて音素と音声を複数モーダル空間に導入するCTAP(Contrastive Token-Acoustic Pretraining)を提案する。
提案したCTAPモデルは、210k音声と音素ペアで訓練され、最小教師付きTS、VC、ASRを実現する。
論文 参考訳(メタデータ) (2023-09-01T12:35:43Z) - The Whole Truth and Nothing But the Truth: Faithful and Controllable
Dialogue Response Generation with Dataflow Transduction and Constrained
Decoding [65.34601470417967]
本稿では,ニューラルネットワークモデリングとルールベース生成の強みを組み合わせた対話応答生成のためのハイブリッドアーキテクチャについて述べる。
本実験により, 本システムは, 流布性, 妥当性, 真理性の評価において, ルールベースおよび学習的アプローチの両方に優れることがわかった。
論文 参考訳(メタデータ) (2022-09-16T09:00:49Z) - SPLAT: Speech-Language Joint Pre-Training for Spoken Language
Understanding [61.02342238771685]
音声理解には、入力音響信号を解析してその言語内容を理解し、予測するモデルが必要である。
大規模無注釈音声やテキストからリッチな表現を学習するために,様々な事前学習手法が提案されている。
音声と言語モジュールを協調的に事前学習するための,新しい半教師付き学習フレームワークであるSPLATを提案する。
論文 参考訳(メタデータ) (2020-10-05T19:29:49Z) - An Effective Contextual Language Modeling Framework for Speech
Summarization with Augmented Features [13.97006782398121]
変換器による双方向表現(BERT)モデルが提案され,多くの自然言語処理タスクにおいて記録破りの成功を収めた。
本研究では,不完全な自動音声認識によるネガティブな影響を軽減するために,信頼度スコアを文表現に組み込むことを検討した。
提案手法の有効性をベンチマークデータセットで検証する。
論文 参考訳(メタデータ) (2020-06-01T18:27:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。