論文の概要: GOAT-TTS: LLM-based Text-To-Speech Generation Optimized via A Dual-Branch Architecture
- arxiv url: http://arxiv.org/abs/2504.12339v1
- Date: Tue, 15 Apr 2025 01:44:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:35:50.030798
- Title: GOAT-TTS: LLM-based Text-To-Speech Generation Optimized via A Dual-Branch Architecture
- Title(参考訳): GOAT-TTS:デュアルブランチアーキテクチャにより最適化されたLLMベースのテキスト音声生成
- Authors: Yaodong Song, Hongjie Chen, Jie Lian, Yuxin Zhang, Guangmin Xia, Zehan Li, Genliang Zhao, Jian Kang, Yongxiang Li, Jie Li,
- Abstract要約: 新たな2分岐ArchiTecture(GOAT-TTS)を用いた音声合成手法を提案する。
GOAT-TTSは音声エンコーダとプロジェクタを組み合わせて連続的な音響埋め込みをキャプチャし、パラ言語的特徴(言語、音色、感情)と意味的テキスト表現の双方向の相関を可能にする。
実験の結果,GOAT-TTSは最先端のTSモデルに匹敵する性能を示した。
- 参考スコア(独自算出の注目度): 12.303324248639266
- License:
- Abstract: While large language models (LLMs) have revolutionized text-to-speech (TTS) synthesis through discrete tokenization paradigms, current architectures exhibit fundamental tensions between three critical dimensions: 1) irreversible loss of acoustic characteristics caused by quantization of speech prompts; 2) stringent dependence on precisely aligned prompt speech-text pairs that limit real-world deployment; and 3) catastrophic forgetting of the LLM's native text comprehension during optimization for speech token generation. To address these challenges, we propose an LLM-based text-to-speech Generation approach Optimized via a novel dual-branch ArchiTecture (GOAT-TTS). Our framework introduces two key innovations: (1) The modality-alignment branch combines a speech encoder and projector to capture continuous acoustic embeddings, enabling bidirectional correlation between paralinguistic features (language, timbre, emotion) and semantic text representations without transcript dependency; (2) The speech-generation branch employs modular fine-tuning on top-k layers of an LLM for speech token prediction while freezing the bottom-k layers to preserve foundational linguistic knowledge. Moreover, multi-token prediction is introduced to support real-time streaming TTS synthesis. Experimental results demonstrate that our GOAT-TTS achieves performance comparable to state-of-the-art TTS models while validating the efficacy of synthesized dialect speech data.
- Abstract(参考訳): 大規模言語モデル(LLM)は、離散的なトークン化パラダイムを通じてTTS合成に革命をもたらしたが、現在のアーキテクチャは3つの重要な次元の間に基本的な緊張関係を示している。
1) 音声プロンプトの量子化による音響特性の不可逆的損失
2) 実世界の展開を制限した精密に整列した音声テキスト対への厳密な依存
3) 音声トークン生成の最適化において, LLMのネイティブテキスト理解を破滅的に忘れる。
これらの課題に対処するために,新しいデュアルブランチArchiTecture (GOAT-TTS) によって最適化されたLLMベースのテキスト音声生成手法を提案する。
本フレームワークでは,(1) 音声エンコーダとプロジェクタを組み合わせて連続的な音響埋め込みを捕捉し, パラ言語的特徴(言語, 音色, 感情)と意味的テキスト表現の双方向的相関を可能にする。
さらに、リアルタイムストリーミングTTS合成をサポートするために、マルチトークン予測を導入する。
実験の結果, GOAT-TTSは, 合成方言音声データの有効性を検証しながら, 最先端のTSモデルに匹敵する性能を達成できた。
関連論文リスト
- SEAL: Speech Embedding Alignment Learning for Speech Large Language Model with Retrieval-Augmented Generation [10.828717295018123]
本稿では,中間テキスト表現の必要性を解消する統合埋め込みフレームワークを提案する。
本モデルでは,従来の2段階法に比べて高い精度でパイプライン遅延を50%削減する。
論文 参考訳(メタデータ) (2025-01-26T15:04:02Z) - CosyVoice 2: Scalable Streaming Speech Synthesis with Large Language Models [74.80386066714229]
改良されたストリーミング音声合成モデルCosyVoice 2を提案する。
具体的には,音声トークンのコードブック利用を改善するために,有限スカラー量子化を導入する。
我々は,様々な合成シナリオをサポートするために,チャンク対応因果フローマッチングモデルを開発した。
論文 参考訳(メタデータ) (2024-12-13T12:59:39Z) - CosyVoice: A Scalable Multilingual Zero-shot Text-to-speech Synthesizer based on Supervised Semantic Tokens [49.569695524535454]
本稿では, ベクトル量子化をエンコーダに挿入することにより, 多言語音声認識モデルから導出される, 教師付きセマンティックトークンを用いた音声表現を提案する。
トークンをベースとした拡張性のあるゼロショットTSシンセサイザーであるCosyVoiceは,テキスト・ツー・ツー・ケン生成のためのLLMと,トークン・ツー・音声合成のための条件付きフローマッチングモデルから構成される。
論文 参考訳(メタデータ) (2024-07-07T15:16:19Z) - A Non-autoregressive Generation Framework for End-to-End Simultaneous Speech-to-Speech Translation [48.84039953531355]
同時音声翻訳のための新しい非自己回帰生成フレームワーク(NAST-S2X)を提案する。
NAST-S2Xは、音声テキストと音声音声タスクを統合エンドツーエンドフレームワークに統合する。
3秒未満の遅延で高品質な同時解釈を実現し、オフライン生成において28倍のデコードスピードアップを提供する。
論文 参考訳(メタデータ) (2024-06-11T04:25:48Z) - Utilizing Neural Transducers for Two-Stage Text-to-Speech via Semantic
Token Prediction [15.72317249204736]
本稿では,ニューラルトランスデューサを中心とした新しいテキスト音声合成(TTS)フレームワークを提案する。
提案手法では,TSパイプライン全体をセマンティックレベルのシーケンス・ツー・シーケンス・モデリング(seq2seq)ときめ細かな音響モデルステージに分割する。
ゼロショット適応型TS実験の結果,音声品質と話者類似度の観点から,モデルがベースラインを超えていることが判明した。
論文 参考訳(メタデータ) (2024-01-03T02:03:36Z) - Transduce and Speak: Neural Transducer for Text-to-Speech with Semantic
Token Prediction [14.661123738628772]
本稿では,ニューラルトランスデューサに基づくテキスト音声合成(TTS)フレームワークを提案する。
We use discretized semantic tokens acquired from wav2vec2.0 embeddeddings, which makes it easy to adopt a neural transducer for the TTS framework enjoy its monotonic alignment constraints。
論文 参考訳(メタデータ) (2023-11-06T06:13:39Z) - TranSpeech: Speech-to-Speech Translation With Bilateral Perturbation [61.564874831498145]
TranSpeechは、両側摂動を伴う音声から音声への翻訳モデルである。
我々は,非自己回帰S2ST手法を構築し,繰り返しマスキングを行い,単位選択を予測する。
TranSpeechは推論遅延を大幅に改善し、自動回帰技術よりも最大21.4倍のスピードアップを実現している。
論文 参考訳(メタデータ) (2022-05-25T06:34:14Z) - Advances in Speech Vocoding for Text-to-Speech with Continuous
Parameters [2.6572330982240935]
本稿では,連続的なボコーダにおいて,全ての特徴が連続的であり,フレキシブルな音声合成システムを示す新しい手法を提案する。
位相歪みに基づく新しい連続雑音マスキングを提案し,残音の知覚的影響を排除した。
双方向長短期記憶 (LSTM) とゲートリカレント単位 (GRU) について検討し, 連続パラメータのモデル化に応用した。
論文 参考訳(メタデータ) (2021-06-19T12:05:01Z) - Bridging the Modality Gap for Speech-to-Text Translation [57.47099674461832]
エンド・ツー・エンドの音声翻訳は、ある言語における音声を、エンド・ツー・エンドの方法で他の言語におけるテキストに変換することを目的としている。
既存のほとんどの手法では、音響表現と意味情報を同時に学習するために、単一のエンコーダを持つエンコーダ・デコーダ構造を用いる。
本稿では,音声とテキスト間のモダリティギャップを埋めることで,エンドツーエンドのモデル性能を向上させることを目的とした音声翻訳モデルのための音声テキスト適応手法を提案する。
論文 参考訳(メタデータ) (2020-10-28T12:33:04Z) - SPLAT: Speech-Language Joint Pre-Training for Spoken Language
Understanding [61.02342238771685]
音声理解には、入力音響信号を解析してその言語内容を理解し、予測するモデルが必要である。
大規模無注釈音声やテキストからリッチな表現を学習するために,様々な事前学習手法が提案されている。
音声と言語モジュールを協調的に事前学習するための,新しい半教師付き学習フレームワークであるSPLATを提案する。
論文 参考訳(メタデータ) (2020-10-05T19:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。