MIND: Microstructure INverse Design with Generative Hybrid Neural Representation
- URL: http://arxiv.org/abs/2502.02607v1
- Date: Sat, 01 Feb 2025 20:25:47 GMT
- Title: MIND: Microstructure INverse Design with Generative Hybrid Neural Representation
- Authors: Tianyang Xue, Haochen Li, Longdu Liu, Paul Henderson, Pengbin Tang, Lin Lu, Jikai Liu, Haisen Zhao, Hao Peng, Bernd Bickel,
- Abstract summary: inverse design of microstructures plays a pivotal role in optimizing metamaterials with specific, targeted physical properties.
We present a novel generative model that integrates latent diffusion with Holoplane, an advanced hybrid neural representation that simultaneously encodes both geometric and physical properties.
Our approach generalizes across multiple microstructure classes, enabling the generation of diverse, tileable microstructures with significantly improved property accuracy and enhanced control over geometric validity.
- Score: 25.55691106041371
- License:
- Abstract: The inverse design of microstructures plays a pivotal role in optimizing metamaterials with specific, targeted physical properties. While traditional forward design methods are constrained by their inability to explore the vast combinatorial design space, inverse design offers a compelling alternative by directly generating structures that fulfill predefined performance criteria. However, achieving precise control over both geometry and material properties remains a significant challenge due to their intricate interdependence. Existing approaches, which typically rely on voxel or parametric representations, often limit design flexibility and structural diversity. In this work, we present a novel generative model that integrates latent diffusion with Holoplane, an advanced hybrid neural representation that simultaneously encodes both geometric and physical properties. This combination ensures superior alignment between geometry and properties. Our approach generalizes across multiple microstructure classes, enabling the generation of diverse, tileable microstructures with significantly improved property accuracy and enhanced control over geometric validity, surpassing the performance of existing methods. We introduce a multi-class dataset encompassing a variety of geometric morphologies, including truss, shell, tube, and plate structures, to train and validate our model. Experimental results demonstrate the model's ability to generate microstructures that meet target properties, maintain geometric validity, and integrate seamlessly into complex assemblies. Additionally, we explore the potential of our framework through the generation of new microstructures, cross-class interpolation, and the infilling of heterogeneous microstructures. The dataset and source code will be open-sourced upon publication.
Related papers
- Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
New solid-state materials require rapidly exploring the vast space of crystal structures and locating stable regions.
Existing methods struggle to explore large material spaces and generate diverse samples with desired properties and requirements.
We propose a novel generative model employing a hierarchical exploration strategy to efficiently exploit the symmetry of the materials space to generate crystal structures given desired properties.
arXiv Detail & Related papers (2024-11-06T23:53:34Z) - Consistent machine learning for topology optimization with microstructure-dependent neural network material models [0.0]
We present a framework for multiscale structures with spatially varying microstructural symmetry and differentiably different microstructural descriptors.
Our findings highlight the potential of integrating consistency with density-based design optimization.
arXiv Detail & Related papers (2024-08-25T14:17:43Z) - Smooth Like Butter: Evaluating Multi-Lattice Transitions in Property-Augmented Latent Spaces [0.0]
This work implements and evaluates a hybrid geometry/property Variational Autoencoder (VAE) for generating multi-lattice transition regions.
In our study, we found that hybrid VAEs demonstrate enhanced performance in maintaining stiffness continuity through transition regions.
arXiv Detail & Related papers (2024-07-10T22:28:13Z) - ComboStoc: Combinatorial Stochasticity for Diffusion Generative Models [65.82630283336051]
We show that the space spanned by the combination of dimensions and attributes is insufficiently sampled by existing training scheme of diffusion generative models.
We present a simple fix to this problem by constructing processes that fully exploit the structures, hence the name ComboStoc.
arXiv Detail & Related papers (2024-05-22T15:23:10Z) - IME: Integrating Multi-curvature Shared and Specific Embedding for Temporal Knowledge Graph Completion [97.58125811599383]
Temporal Knowledge Graphs (TKGs) incorporate a temporal dimension, allowing for a precise capture of the evolution of knowledge.
We propose a novel Multi-curvature shared and specific Embedding (IME) model for TKGC tasks.
IME incorporates two key properties, namely space-shared property and space-specific property.
arXiv Detail & Related papers (2024-03-28T23:31:25Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOpt is a structure-based molecular optimization method based on a controllable and diffusion model.
We show that DecompOpt can efficiently generate molecules with improved properties than strong de novo baselines.
arXiv Detail & Related papers (2024-03-07T02:53:40Z) - DA-VEGAN: Differentiably Augmenting VAE-GAN for microstructure
reconstruction from extremely small data sets [110.60233593474796]
DA-VEGAN is a model with two central innovations.
A $beta$-variational autoencoder is incorporated into a hybrid GAN architecture.
A custom differentiable data augmentation scheme is developed specifically for this architecture.
arXiv Detail & Related papers (2023-02-17T08:49:09Z) - A Pareto-optimal compositional energy-based model for sampling and
optimization of protein sequences [55.25331349436895]
Deep generative models have emerged as a popular machine learning-based approach for inverse problems in the life sciences.
These problems often require sampling new designs that satisfy multiple properties of interest in addition to learning the data distribution.
arXiv Detail & Related papers (2022-10-19T19:04:45Z) - Remixing Functionally Graded Structures: Data-Driven Topology
Optimization with Multiclass Shape Blending [15.558093285161775]
We propose a data-driven framework for multiclass functionally graded structures.
The key is a new multiclass shape blending scheme that generates smoothly graded microstructures.
It transforms the microscale problem into an efficient, low-dimensional one without confining the design to predefined shapes.
arXiv Detail & Related papers (2021-12-01T16:54:56Z) - Deep Generative Modeling for Mechanistic-based Learning and Design of
Metamaterial Systems [20.659457956055366]
We propose a novel data-driven metamaterial design framework based on deep generative modeling.
We show in this study that the latent space of VAE provides a distance metric to measure shape similarity.
We demonstrate our framework by designing both functionally graded and heterogeneous metamaterial systems.
arXiv Detail & Related papers (2020-06-27T03:56:55Z) - Data-Driven Topology Optimization with Multiclass Microstructures using
Latent Variable Gaussian Process [18.17435834037483]
We develop a multi-response latent-variable Gaussian process (LVGP) model for the microstructure libraries of metamaterials.
The MR-LVGP model embeds the mixed variables into a continuous design space based on their collective effects on the responses.
We show that considering multiclass microstructures can lead to improved performance due to the consistent load-transfer paths for micro- and macro-structures.
arXiv Detail & Related papers (2020-06-27T03:55:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.