RFMedSAM 2: Automatic Prompt Refinement for Enhanced Volumetric Medical Image Segmentation with SAM 2
- URL: http://arxiv.org/abs/2502.02741v1
- Date: Tue, 04 Feb 2025 22:03:23 GMT
- Title: RFMedSAM 2: Automatic Prompt Refinement for Enhanced Volumetric Medical Image Segmentation with SAM 2
- Authors: Bin Xie, Hao Tang, Yan Yan, Gady Agam,
- Abstract summary: Segment Anything Model 2 (SAM 2), a prompt-driven foundation model extending SAM to both image and video domains, has shown superior zero-shot performance compared to its predecessor.
However, similar to SAM, SAM 2 is limited by its output of binary masks, inability to infer semantic labels, and dependence on precise prompts for the target object area.
We explore the upper performance limit of SAM 2 using custom fine-tuning adapters, achieving a Dice Similarity Coefficient (DSC) of 92.30% on the BTCV dataset.
- Score: 15.50695315680438
- License:
- Abstract: Segment Anything Model 2 (SAM 2), a prompt-driven foundation model extending SAM to both image and video domains, has shown superior zero-shot performance compared to its predecessor. Building on SAM's success in medical image segmentation, SAM 2 presents significant potential for further advancement. However, similar to SAM, SAM 2 is limited by its output of binary masks, inability to infer semantic labels, and dependence on precise prompts for the target object area. Additionally, direct application of SAM and SAM 2 to medical image segmentation tasks yields suboptimal results. In this paper, we explore the upper performance limit of SAM 2 using custom fine-tuning adapters, achieving a Dice Similarity Coefficient (DSC) of 92.30% on the BTCV dataset, surpassing the state-of-the-art nnUNet by 12%. Following this, we address the prompt dependency by investigating various prompt generators. We introduce a UNet to autonomously generate predicted masks and bounding boxes, which serve as input to SAM 2. Subsequent dual-stage refinements by SAM 2 further enhance performance. Extensive experiments show that our method achieves state-of-the-art results on the AMOS2022 dataset, with a Dice improvement of 2.9% compared to nnUNet, and outperforms nnUNet by 6.4% on the BTCV dataset.
Related papers
- Learnable Prompting SAM-induced Knowledge Distillation for Semi-supervised Medical Image Segmentation [47.789013598970925]
We propose a learnable prompting SAM-induced Knowledge distillation framework (KnowSAM) for semi-supervised medical image segmentation.
Our model outperforms the state-of-the-art semi-supervised segmentation approaches.
arXiv Detail & Related papers (2024-12-18T11:19:23Z) - SAMPa: Sharpness-aware Minimization Parallelized [51.668052890249726]
Sharpness-aware (SAM) has been shown to improve the generalization of neural networks.
Each SAM update requires emphsequentially computing two gradients, effectively doubling the per-iteration cost.
We propose a simple modification of SAM, termed SAMPa, which allows us to fully parallelize the two gradient computations.
arXiv Detail & Related papers (2024-10-14T16:21:23Z) - SAM2-Adapter: Evaluating & Adapting Segment Anything 2 in Downstream Tasks: Camouflage, Shadow, Medical Image Segmentation, and More [16.40994541980171]
This paper introduces SAM2-Adapter, the first adapter designed to overcome the persistent limitations observed in SAM2.
It builds on the SAM-Adapter's strengths, offering enhanced generalizability and composability for diverse applications.
We show the potential and encourage the research community to leverage the SAM2 model with our SAM2-Adapter.
arXiv Detail & Related papers (2024-08-08T16:40:15Z) - Is SAM 2 Better than SAM in Medical Image Segmentation? [0.6144680854063939]
The Segment Anything Model (SAM) has demonstrated impressive performance in zero-shot promptable segmentation on natural images.
The recently released Segment Anything Model 2 (SAM 2) claims to outperform SAM on images and extends the model's capabilities to video segmentation.
We conducted extensive studies using multiple datasets to compare the performance of SAM and SAM 2.
arXiv Detail & Related papers (2024-08-08T04:34:29Z) - Segment Anything without Supervision [65.93211374889196]
We present Unsupervised SAM (UnSAM) for promptable and automatic whole-image segmentation.
UnSAM utilizes a divide-and-conquer strategy to "discover" the hierarchical structure of visual scenes.
We show that supervised SAM can also benefit from our self-supervised labels.
arXiv Detail & Related papers (2024-06-28T17:47:32Z) - Unleashing the Potential of SAM for Medical Adaptation via Hierarchical Decoding [15.401507589312702]
This paper introduces H-SAM, a prompt-free adaptation of the Segment Anything Model (SAM) for efficient fine-tuning of medical images.
In the initial stage, H-SAM employs SAM's original decoder to generate a prior probabilistic mask, guiding a more intricate decoding process.
Our H-SAM demonstrates a 4.78% improvement in average Dice compared to existing prompt-free SAM variants.
arXiv Detail & Related papers (2024-03-27T05:55:16Z) - WSI-SAM: Multi-resolution Segment Anything Model (SAM) for histopathology whole-slide images [8.179859593451285]
We present WSI-SAM, enhancing Segment Anything Model (SAM) with precise object segmentation capabilities for histopathology images.
To fully exploit pretrained knowledge while minimizing training overhead, we keep SAM frozen, introducing only minimal extra parameters.
Our model outperforms SAM by 4.1 and 2.5 percent points on a ductal carcinoma in situ (DCIS) segmentation tasks and breast cancer metastasis segmentation task.
arXiv Detail & Related papers (2024-03-14T10:30:43Z) - Open-Vocabulary SAM: Segment and Recognize Twenty-thousand Classes Interactively [69.97238935096094]
The Open-Vocabulary SAM is a SAM-inspired model designed for simultaneous interactive segmentation and recognition.
Our method can segment and recognize approximately 22,000 classes.
arXiv Detail & Related papers (2024-01-05T18:59:22Z) - Stable Segment Anything Model [79.9005670886038]
The Segment Anything Model (SAM) achieves remarkable promptable segmentation given high-quality prompts.
This paper presents the first comprehensive analysis on SAM's segmentation stability across a diverse spectrum of prompt qualities.
Our solution, termed Stable-SAM, offers several advantages: 1) improved SAM's segmentation stability across a wide range of prompt qualities, while 2) retaining SAM's powerful promptable segmentation efficiency and generality.
arXiv Detail & Related papers (2023-11-27T12:51:42Z) - SAM-Med2D [34.82072231983896]
We introduce SAM-Med2D, the most comprehensive studies on applying SAM to medical 2D images.
We first collect and curate approximately 4.6M images and 19.7M masks from public and private datasets.
We fine-tune the encoder and decoder of the original SAM to obtain a well-performed SAM-Med2D.
arXiv Detail & Related papers (2023-08-30T17:59:02Z) - Personalize Segment Anything Model with One Shot [52.54453744941516]
We propose a training-free Personalization approach for Segment Anything Model (SAM)
Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior.
PerSAM segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement.
arXiv Detail & Related papers (2023-05-04T17:59:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.