ClarAVy: A Tool for Scalable and Accurate Malware Family Labeling
- URL: http://arxiv.org/abs/2502.02759v1
- Date: Tue, 04 Feb 2025 22:55:39 GMT
- Title: ClarAVy: A Tool for Scalable and Accurate Malware Family Labeling
- Authors: Robert J. Joyce, Derek Everett, Maya Fuchs, Edward Raff, James Holt,
- Abstract summary: Family labeling is an essential component of cyberattack investigation, attribution, and remediation.
ClarAVy is a tool to determine the family to which a malicious file belongs.
ClarAVy has 8 and 12 percentage points higher accuracy than the prior leading tool in labeling the MOTIF and MalPedia datasets.
- Score: 39.68433051199151
- License:
- Abstract: Determining the family to which a malicious file belongs is an essential component of cyberattack investigation, attribution, and remediation. Performing this task manually is time consuming and requires expert knowledge. Automated tools using that label malware using antivirus detections lack accuracy and/or scalability, making them insufficient for real-world applications. Three pervasive shortcomings in these tools are responsible: (1) incorrect parsing of antivirus detections, (2) errors during family alias resolution, and (3) an inappropriate antivirus aggregation strategy. To address each of these, we created our own malware family labeling tool called ClarAVy. ClarAVy utilizes a Variational Bayesian approach to aggregate detections from a collection of antivirus products into accurate family labels. Our tool scales to enormous malware datasets, and we evaluated it by labeling $\approx$40 million malicious files. ClarAVy has 8 and 12 percentage points higher accuracy than the prior leading tool in labeling the MOTIF and MalPedia datasets, respectively.
Related papers
- Unveiling Malware Patterns: A Self-analysis Perspective [15.517313565392852]
VisUnpack is a static analysis-based data visualization framework for bolstering attack prevention and aiding recovery post-attack.
Our method includes unpacking packed malware programs, calculating local similarity descriptors based on basic blocks, enhancing correlations between descriptors, and refining them by minimizing noises.
Our comprehensive evaluation of VisUnpack based on a freshly gathered dataset with over 27,106 samples confirms its capability in accurately classifying malware programs with a precision of 99.7%.
arXiv Detail & Related papers (2025-01-10T16:04:13Z) - MalDICT: Benchmark Datasets on Malware Behaviors, Platforms, Exploitation, and Packers [44.700094741798445]
Existing research on malware classification focuses almost exclusively on two tasks: distinguishing between malicious and benign files and classifying malware by family.
We have identified four tasks which are under-represented in prior work: classification by behaviors that malware exhibit, platforms that malware run on, vulnerabilities that malware exploit, and packers that malware are packed with.
We are releasing benchmark datasets for each of these four classification tasks, tagged using ClarAVy and comprising nearly 5.5 million malicious files in total.
arXiv Detail & Related papers (2023-10-18T04:36:26Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - MOTIF: A Large Malware Reference Dataset with Ground Truth Family Labels [21.050311121388813]
We have created the Malware Open-source Threat Intelligence Family (MOTIF) dataset.
MOTIF contains 3,095 malware samples from 454 families, making it the largest and most diverse public malware dataset.
We provide aliases of the different names used to describe the same malware family, allowing us to benchmark for the first time accuracy of existing tools.
arXiv Detail & Related papers (2021-11-29T23:59:50Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
We propose an explainability-guided and model-agnostic testing framework for robustness of malware detectors.
We then use this framework to test several state-of-the-art malware detectors' abilities to detect manipulated malware.
Our findings shed light on the limitations of current malware detectors, as well as how they can be improved.
arXiv Detail & Related papers (2021-11-19T08:02:38Z) - Beyond the Hype: A Real-World Evaluation of the Impact and Cost of
Machine Learning-Based Malware Detection [5.876081415416375]
There is a lack of scientific testing of commercially available malware detectors.
We present a scientific evaluation of four market-leading malware detection tools.
Our results show that all four tools have near-perfect precision but alarmingly low recall.
arXiv Detail & Related papers (2020-12-16T19:10:00Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
We show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier.
As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger.
We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.
arXiv Detail & Related papers (2020-10-30T15:27:44Z) - DAEMON: Dataset-Agnostic Explainable Malware Classification Using
Multi-Stage Feature Mining [3.04585143845864]
Malware classification is the task of determining to which family a new malicious variant belongs.
We present DAEMON, a novel dataset-agnostic malware classification tool.
arXiv Detail & Related papers (2020-08-04T21:57:30Z) - Maat: Automatically Analyzing VirusTotal for Accurate Labeling and
Effective Malware Detection [71.84087757644708]
The malware analysis and detection research community relies on the online platform VirusTotal to label Android apps based on the scan results of around 60 scanners.
There are no standards on how to best interpret the scan results acquired from VirusTotal, which leads to the utilization of different threshold-based labeling strategies.
We implemented a method, Maat, that tackles these issues of standardization and sustainability by automatically generating a Machine Learning (ML)-based labeling scheme.
arXiv Detail & Related papers (2020-07-01T14:15:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.