論文の概要: PH-VAE: A Polynomial Hierarchical Variational Autoencoder Towards Disentangled Representation Learning
- arxiv url: http://arxiv.org/abs/2502.02856v2
- Date: Thu, 13 Feb 2025 09:11:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:45:09.361511
- Title: PH-VAE: A Polynomial Hierarchical Variational Autoencoder Towards Disentangled Representation Learning
- Title(参考訳): PH-VAE:分散表現学習に向けた多言語階層型変分オートエンコーダ
- Authors: Xi Chen, Shaofan Li,
- Abstract要約: Diveral Autoencoder (VAE) は、様々な種類のデータの複雑な確率分布をモデル化するための、シンプルで効率的な生成人工知能手法である。
階層型変動オートエンコーダ (PH-VAE) を開発した。
また,KL(Kulback-Leibler)の変分を置き換えたり一般化したりするために,変分損失関数の多項偏差を新たに提案した。
- 参考スコア(独自算出の注目度): 5.478519374490149
- License:
- Abstract: The variational autoencoder (VAE) is a simple and efficient generative artificial intelligence method for modeling complex probability distributions of various types of data, such as images and texts. However, it suffers some main shortcomings, such as lack of interpretability in the latent variables, difficulties in tuning hyperparameters while training, producing blurry, unrealistic downstream outputs or loss of information due to how it calculates loss functions and recovers data distributions, overfitting, and origin gravity effect for small data sets, among other issues. These and other limitations have caused unsatisfactory generation effects for the data with complex distributions. In this work, we proposed and developed a polynomial hierarchical variational autoencoder (PH-VAE), in which we used a polynomial hierarchical date format to generate or to reconstruct the data distributions. In doing so, we also proposed a novel Polynomial Divergence in the loss function to replace or generalize the Kullback-Leibler (KL) divergence, which results in systematic and drastic improvements in both accuracy and reproducibility of the re-constructed distribution function as well as the quality of re-constructed data images while keeping the dataset size the same but capturing fine resolution of the data. Moreover, we showed that the proposed PH-VAE has some form of disentangled representation learning ability.
- Abstract(参考訳): 可変オートエンコーダ(VAE)は、画像やテキストなどの様々な種類のデータの複雑な確率分布をモデル化するための、シンプルで効率的な生成人工知能手法である。
しかし、潜在変数の解釈可能性の欠如、トレーニング中のハイパーパラメータのチューニングの困難、ぼやけ、非現実的なダウンストリーム出力の生成、損失関数の計算方法による情報の損失、データ分布の回復、オーバーフィッティング、小さなデータセットの起点重力効果など、いくつかの大きな欠点がある。
これらの制限やその他の制限は、複雑な分布を持つデータに対して不満足な生成効果を引き起こしている。
本研究では,多項式階層的変動自動エンコーダ (PH-VAE) を提案し,データ分布の生成や再構成に多項式階層的日付形式を用いた。
そこで我々は,KL(Kulback-Leibler)の分散を置換あるいは一般化する損失関数に,新たにポリノミアル偏差(Polynomial Divergence)を提案する。これにより,再構成された分布関数の精度と再現性,さらにはデータセットサイズを同じに保ちながらデータの微細化を捉えるとともに,再構成されたデータ画像の品質の両面において,体系的かつ劇的な改善がもたらされる。
さらに,提案したPH-VAEは,ある種の非絡み合い表現学習能力を有することを示した。
関連論文リスト
- Robust training of implicit generative models for multivariate and heavy-tailed distributions with an invariant statistical loss [0.4249842620609682]
我々は、引用2024トレーニングで導入されたISL(textitinvariant statistics loss)法に基づいて構築する。
重み付きおよび多変量データ分散を扱うように拡張する。
ジェネレーティブ・ジェネレーティブ・モデリングにおけるその性能を評価し、ジェネレーティブ・ディバイサル・ネットワーク(GAN)の事前学習技術としての可能性を探る。
論文 参考訳(メタデータ) (2024-10-29T10:27:50Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
本稿では,構造空間上でインスタンス化された同変表現学習における最近の結果と,因果推論における古典的結果の簡易な利用が,いかに効果的に実現されたかを示す。
いくつかの仮定の下で、我々のモデルが複数のニュアンス変数を扱えることを実証し、そうでなければサンプルの大部分を取り除く必要のあるシナリオにおいて、プールされた科学データセットの分析を可能にする。
論文 参考訳(メタデータ) (2022-03-29T04:54:06Z) - PCENet: High Dimensional Surrogate Modeling for Learning Uncertainty [15.781915567005251]
本稿では,表現学習と不確実性定量化のための新しい代理モデルを提案する。
提案モデルでは、(潜在的に高次元の)データの次元的低減のためのニューラルネットワークアプローチと、データ分布を学習するための代理モデル手法を組み合わせる。
我々のモデルは,データの表現を学習し,(a)高次元データシステムにおける不確実性を推定し,(c)出力分布の高次モーメントを一致させることができる。
論文 参考訳(メタデータ) (2022-02-10T14:42:51Z) - Disentangling Generative Factors of Physical Fields Using Variational
Autoencoders [0.0]
本研究は,非線形次元低減のための変分オートエンコーダ (VAE) の利用について検討する。
不整合分解は解釈可能であり、生成的モデリングを含む様々なタスクに転送することができる。
論文 参考訳(メタデータ) (2021-09-15T16:02:43Z) - Efficient Multidimensional Functional Data Analysis Using Marginal
Product Basis Systems [2.4554686192257424]
多次元関数データのサンプルから連続表現を学習するためのフレームワークを提案する。
本研究では, テンソル分解により, 得られた推定問題を効率的に解けることを示す。
我々は、ニューロイメージングにおける真のデータ応用で締めくくっている。
論文 参考訳(メタデータ) (2021-07-30T16:02:15Z) - Neural Decomposition: Functional ANOVA with Variational Autoencoders [9.51828574518325]
変分オートエンコーダ (VAEs) は次元減少に対する一般的なアプローチとなっている。
VAEのブラックボックスの性質のため、医療やゲノミクスの応用には限界があった。
本研究では,条件付きVAEの変動源の特徴付けに焦点をあてる。
論文 参考訳(メタデータ) (2020-06-25T10:29:13Z) - On the Benefits of Invariance in Neural Networks [56.362579457990094]
データ拡張によるトレーニングは、リスクとその勾配をよりよく見積もることを示し、データ拡張でトレーニングされたモデルに対して、PAC-Bayes一般化を提供する。
また,データ拡張と比べ,平均化は凸損失を伴う場合の一般化誤差を低減し,PAC-Bayes境界を狭めることを示した。
論文 参考訳(メタデータ) (2020-05-01T02:08:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。