Lowering the Barrier of Machine Learning: Achieving Zero Manual Labeling in Review Classification Using LLMs
- URL: http://arxiv.org/abs/2502.02893v1
- Date: Wed, 05 Feb 2025 05:31:54 GMT
- Title: Lowering the Barrier of Machine Learning: Achieving Zero Manual Labeling in Review Classification Using LLMs
- Authors: Yejian Zhang, Shingo Takada,
- Abstract summary: This paper introduces an approach that integrates large language models (LLMs), specifically Generative Pre-trained Transformer (GPT) and Bidirectional Representations from Transformers (BERT)
Our approach retains high classification accuracy without the need for manual labeling, expert knowledge in tuning and data annotation, or substantial computational power.
- Score: 0.0
- License:
- Abstract: With the internet's evolution, consumers increasingly rely on online reviews for service or product choices, necessitating that businesses analyze extensive customer feedback to enhance their offerings. While machine learning-based sentiment classification shows promise in this realm, its technical complexity often bars small businesses and individuals from leveraging such advancements, which may end up making the competitive gap between small and large businesses even bigger in terms of improving customer satisfaction. This paper introduces an approach that integrates large language models (LLMs), specifically Generative Pre-trained Transformer (GPT) and Bidirectional Encoder Representations from Transformers (BERT)-based models, making it accessible to a wider audience. Our experiments across various datasets confirm that our approach retains high classification accuracy without the need for manual labeling, expert knowledge in tuning and data annotation, or substantial computational power. By significantly lowering the barriers to applying sentiment classification techniques, our methodology enhances competitiveness and paves the way for making machine learning technology accessible to a broader audience.
Related papers
- A Deep Learning Approach for Imbalanced Tabular Data in Advertiser Prospecting: A Case of Direct Mail Prospecting [0.6990493129893112]
We propose a supervised learning approach for identifying new customers, i.e., prospecting, which comprises how we define labels for our data and rank potential customers.
This framework is designed to tackle large imbalanced datasets with vast number of numerical and categorical features.
Our framework comprises two components: an autoencoder and a feed-forward neural network.
arXiv Detail & Related papers (2024-10-02T01:19:40Z) - LLM-based Weak Supervision Framework for Query Intent Classification in Video Search [6.519428288229856]
We introduce a novel approach that leverages large language models (LLMs) through weak supervision to automatically annotate a vast collection of user search queries.
By incorporating domain knowledge via Chain of Thought and In-Context Learning, our approach leverages the labeled data to train low-latency models optimized for real-time inference.
arXiv Detail & Related papers (2024-09-13T15:47:50Z) - Retrieval Augmentation via User Interest Clustering [57.63883506013693]
Industrial recommender systems are sensitive to the patterns of user-item engagement.
We propose a novel approach that efficiently constructs user interest and facilitates low computational cost inference.
Our approach has been deployed in multiple products at Meta, facilitating short-form video related recommendation.
arXiv Detail & Related papers (2024-08-07T16:35:10Z) - LEARN: Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application [54.984348122105516]
Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework synergizes open-world knowledge with collaborative knowledge.
We propose an Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework that synergizes open-world knowledge with collaborative knowledge.
arXiv Detail & Related papers (2024-05-07T04:00:30Z) - Efficient Prompt Tuning of Large Vision-Language Model for Fine-Grained Ship Classification [59.99976102069976]
Fine-grained ship classification in remote sensing (RS-FGSC) poses a significant challenge due to the high similarity between classes and the limited availability of labeled data.
Recent advancements in large pre-trained Vision-Language Models (VLMs) have demonstrated impressive capabilities in few-shot or zero-shot learning.
This study delves into harnessing the potential of VLMs to enhance classification accuracy for unseen ship categories.
arXiv Detail & Related papers (2024-03-13T05:48:58Z) - CLASSify: A Web-Based Tool for Machine Learning [0.0]
This article presents an automated tool for machine learning classification problems to simplify the process of training models and producing results while providing informative visualizations and insights into the data.
We present CLASSify, an open-source tool for solving classification problems without the need for knowledge of machine learning.
arXiv Detail & Related papers (2023-10-05T15:51:36Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - Optimizing Multi-Class Text Classification: A Diverse Stacking Ensemble
Framework Utilizing Transformers [0.0]
This study introduces a stacking ensemble-based multi-text classification method that leverages transformer models.
By combining multiple single transformers, including BERT, ELECTRA, and DistilBERT, an optimal predictive model is generated.
Experimental evaluations conducted on a real-world customer review dataset demonstrate the effectiveness and superiority of the proposed approach.
arXiv Detail & Related papers (2023-08-19T13:29:15Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
Federated edge learning is a promising technology to deploy intelligence at the edge of wireless networks in a privacy-preserving manner.
Under such a setting, multiple clients collaboratively train a global generic model under the coordination of an edge server.
This paper presents a distributed training paradigm that employs analog over-the-air computation to address the communication bottleneck.
arXiv Detail & Related papers (2023-02-24T08:41:19Z) - Opinion Spam Detection: A New Approach Using Machine Learning and
Network-Based Algorithms [2.062593640149623]
Online reviews play a crucial role in helping consumers evaluate and compare products and services.
Fake reviews (opinion spam) are becoming more prevalent and negatively impacting customers and service providers.
We propose a new method for classifying reviewers as spammers or benign, combining machine learning with a message-passing algorithm.
arXiv Detail & Related papers (2022-05-26T15:27:46Z) - Deep invariant networks with differentiable augmentation layers [87.22033101185201]
Methods for learning data augmentation policies require held-out data and are based on bilevel optimization problems.
We show that our approach is easier and faster to train than modern automatic data augmentation techniques.
arXiv Detail & Related papers (2022-02-04T14:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.