High-fidelity initialization a logical qubit with multiple injections
- URL: http://arxiv.org/abs/2502.02897v1
- Date: Wed, 05 Feb 2025 05:37:57 GMT
- Title: High-fidelity initialization a logical qubit with multiple injections
- Authors: Zhi-Cheng He, Zheng-Yuan Xue,
- Abstract summary: We introduce a continuous fault-tolerant scheme for non-Clifford logical gates via multiple injections.
Compared to previous efforts, our protocol significantly alleviates the challenges associated with a large code distance.
- Score: 1.5688934168773208
- License:
- Abstract: Quantum error correction represents a significant advancement in large-scale quantum computing. However, achieving fault-tolerant implementations of non-Clifford logical gates with reduced overhead remains a challenge in the popular surface code strategy. Recent advances have underscored the need for a substantial code distance to attain complete fault tolerance. Here, we introduce a continuous fault-tolerant scheme for non-Clifford logical gates via multiple injections. Unlike existing protocols that focus on a single logical chain, our approach utilizes multiple logical chains, each can employ the same or different logical rotation angles, to initialize a non-Clifford state. Compared to previous efforts, our protocol significantly alleviates the challenges associated with the requirement for a large code distance and reduces the corresponding resource overhead, making it more feasible to be implemented in current mid-scale chips via the surface code strategy.
Related papers
- Scaling and logic in the color code on a superconducting quantum processor [109.61104855764401]
We present a demonstration of the color code on a superconducting processor, achieving logical error suppression and performing logical operations.
We inject magic states, a key resource for universal computation, achieving fidelities exceeding 99% with post-selection.
This work establishes the color code as a compelling research direction to realize fault-tolerant quantum computation on superconducting processors.
arXiv Detail & Related papers (2024-12-18T19:00:05Z) - Error-mitigated initialization of surface codes with non-Pauli stabilizers [1.5688934168773208]
We enhance the performance of the conventional surface code by incorporating non-Pauli stabilizers.
We demonstrate the ability to entangle logical qubits in non-Pauli and Pauli bases via the lattice surgery technique.
arXiv Detail & Related papers (2024-11-10T09:58:53Z) - Convolutional Differentiable Logic Gate Networks [68.74313756770123]
We propose an approach for learning logic gate networks directly via a differentiable relaxation.
We build on this idea, extending it by deep logic gate tree convolutions and logical OR pooling.
On CIFAR-10, we achieve an accuracy of 86.29% using only 61 million logic gates, which improves over the SOTA while being 29x smaller.
arXiv Detail & Related papers (2024-11-07T14:12:00Z) - Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
We show that fault-tolerant logical operations can be performed with constant time overhead for a broad class of quantum codes.
We prove that the deviation from the ideal measurement result distribution can be made exponentially small in the code distance.
Our work sheds new light on the theory of fault tolerance, potentially reducing the space-time cost of practical fault-tolerant quantum computation by orders of magnitude.
arXiv Detail & Related papers (2024-06-25T15:43:25Z) - Transversal Injection: Using the Surface Code to Prepare Non-Pauli Eigenstates [37.94431794242543]
Quantum Error Correction (QEC) allows us to use systems with a large number of physical qubits and a favourable logical error rate.
Transversal Injection is a new method of preparing logical non-Pauliigen estates that can be used as resource states for quantum computation.
arXiv Detail & Related papers (2023-12-27T03:32:03Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
We introduce a protocol to potentially reduce this overhead for non-Clifford gates.
Preliminary results hint at high quality fidelities at larger distances.
arXiv Detail & Related papers (2022-11-18T06:03:10Z) - Partitioning qubits in hypergraph product codes to implement logical
gates [0.0]
Transversal gates are the simplest type of fault-tolerant logical gates.
We show that gates can be used as the basis for universal quantum computing on LDPC codes.
arXiv Detail & Related papers (2022-04-22T16:45:19Z) - Logical blocks for fault-tolerant topological quantum computation [55.41644538483948]
We present a framework for universal fault-tolerant logic motivated by the need for platform-independent logical gate definitions.
We explore novel schemes for universal logic that improve resource overheads.
Motivated by the favorable logical error rates for boundaryless computation, we introduce a novel computational scheme.
arXiv Detail & Related papers (2021-12-22T19:00:03Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.