Learning Efficient Flocking Control based on Gibbs Random Fields
- URL: http://arxiv.org/abs/2502.02984v1
- Date: Wed, 05 Feb 2025 08:27:58 GMT
- Title: Learning Efficient Flocking Control based on Gibbs Random Fields
- Authors: Dengyu Zhang, Chenghao, Feng Xue, Qingrui Zhang,
- Abstract summary: Multi-agent reinforcement learning framework built on Gibbs Random Fields (GRFs)
An action attention module is introduced to implicitly anticipate the motion intentions of neighboring robots.
Proposed framework enables learning an efficient distributed control policy for multi-robot systems in challenging environments with success rate around $99%$.
- Score: 8.715391538937707
- License:
- Abstract: Flocking control is essential for multi-robot systems in diverse applications, yet achieving efficient flocking in congested environments poses challenges regarding computation burdens, performance optimality, and motion safety. This paper addresses these challenges through a multi-agent reinforcement learning (MARL) framework built on Gibbs Random Fields (GRFs). With GRFs, a multi-robot system is represented by a set of random variables conforming to a joint probability distribution, thus offering a fresh perspective on flocking reward design. A decentralized training and execution mechanism, which enhances the scalability of MARL concerning robot quantity, is realized using a GRF-based credit assignment method. An action attention module is introduced to implicitly anticipate the motion intentions of neighboring robots, consequently mitigating potential non-stationarity issues in MARL. The proposed framework enables learning an efficient distributed control policy for multi-robot systems in challenging environments with success rate around $99\%$, as demonstrated through thorough comparisons with state-of-the-art solutions in simulations and experiments. Ablation studies are also performed to validate the efficiency of different framework modules.
Related papers
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.
However, they still struggle with problems requiring multi-step decision-making and environmental feedback.
We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models [57.45019514036948]
Simultaneous MRMP Diffusion (SMD) is a novel approach integrating constrained optimization into the diffusion sampling process to produce kinematically feasible trajectories.
The paper introduces a comprehensive MRMP benchmark to evaluate trajectory planning algorithms across scenarios with varying robot densities, obstacle complexities, and motion constraints.
arXiv Detail & Related papers (2025-02-05T20:51:28Z) - A Local Information Aggregation based Multi-Agent Reinforcement Learning for Robot Swarm Dynamic Task Allocation [4.144893164317513]
We introduce a novel framework using a decentralized partially observable Markov decision process (Dec_POMDP)
At the core of our methodology is the Local Information Aggregation Multi-Agent Deep Deterministic Policy Gradient (LIA_MADDPG) algorithm.
Our empirical evaluations show that the LIA module can be seamlessly integrated into various CTDE-based MARL methods.
arXiv Detail & Related papers (2024-11-29T07:53:05Z) - R-AIF: Solving Sparse-Reward Robotic Tasks from Pixels with Active Inference and World Models [50.19174067263255]
We introduce prior preference learning techniques and self-revision schedules to help the agent excel in sparse-reward, continuous action, goal-based robotic control POMDP environments.
We show that our agents offer improved performance over state-of-the-art models in terms of cumulative rewards, relative stability, and success rate.
arXiv Detail & Related papers (2024-09-21T18:32:44Z) - Efficient Multi-agent Reinforcement Learning by Planning [33.51282615335009]
Multi-agent reinforcement learning (MARL) algorithms have accomplished remarkable breakthroughs in solving large-scale decision-making tasks.
Most existing MARL algorithms are model-free, limiting sample efficiency and hindering their applicability in more challenging scenarios.
We propose the MAZero algorithm, which combines a centralized model with Monte Carlo Tree Search (MCTS) for policy search.
arXiv Detail & Related papers (2024-05-20T04:36:02Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Semantically Aligned Task Decomposition in Multi-Agent Reinforcement
Learning [56.26889258704261]
We propose a novel "disentangled" decision-making method, Semantically Aligned task decomposition in MARL (SAMA)
SAMA prompts pretrained language models with chain-of-thought that can suggest potential goals, provide suitable goal decomposition and subgoal allocation as well as self-reflection-based replanning.
SAMA demonstrates considerable advantages in sample efficiency compared to state-of-the-art ASG methods.
arXiv Detail & Related papers (2023-05-18T10:37:54Z) - Safe-Critical Modular Deep Reinforcement Learning with Temporal Logic
through Gaussian Processes and Control Barrier Functions [3.5897534810405403]
Reinforcement learning (RL) is a promising approach and has limited success towards real-world applications.
In this paper, we propose a learning-based control framework consisting of several aspects.
We show such an ECBF-based modular deep RL algorithm achieves near-perfect success rates and guard safety with a high probability.
arXiv Detail & Related papers (2021-09-07T00:51:12Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.