論文の概要: RepLoRA: Reparameterizing Low-Rank Adaptation via the Perspective of Mixture of Experts
- arxiv url: http://arxiv.org/abs/2502.03044v1
- Date: Wed, 05 Feb 2025 10:03:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:26:59.744271
- Title: RepLoRA: Reparameterizing Low-Rank Adaptation via the Perspective of Mixture of Experts
- Title(参考訳): RepLoRA: 専門家の混在の視点からの低ランク適応の再パラメータ化
- Authors: Tuan Truong, Chau Nguyen, Huy Nguyen, Minh Le, Trung Le, Nhat Ho,
- Abstract要約: 低ランク適応 (LoRA) は、大規模基盤モデルを微調整するための強力な手法として登場した。
本稿では,LoRAモデルとMixture of Expertsモデルとの関連性を検討することによって,ロラの理論解析を行う。
- 参考スコア(独自算出の注目度): 37.43961020113692
- License:
- Abstract: Low-rank adaptation (LoRA) has emerged as a powerful method for fine-tuning large-scale foundation models. Despite its popularity, the theoretical understanding of LoRA has remained limited. This paper presents a theoretical analysis of LoRA by examining its connection to the Mixture of Experts models. Under this framework, we show that simple reparameterizations of the LoRA matrices can notably accelerate the low-rank matrix estimation process. In particular, we prove that reparameterization can reduce the data needed to achieve a desired estimation error from an exponential to a polynomial scale. Motivated by this insight, we propose Reparameterized Low-rank Adaptation (RepLoRA), which incorporates lightweight MLPs to reparameterize the LoRA matrices. Extensive experiments across multiple domains demonstrate that RepLoRA consistently outperforms vanilla LoRA. Notably, with limited data, RepLoRA surpasses LoRA by a margin of up to 40.0% and achieves LoRA's performance with only 30.0% of the training data, highlighting both the theoretical and empirical robustness of our PEFT method.
- Abstract(参考訳): 低ランク適応 (LoRA) は、大規模基盤モデルを微調整するための強力な手法として登場した。
その人気にもかかわらず、ロラの理論的な理解は依然として限られている。
本稿では,LoRAモデルとMixture of Expertsモデルとの関連性を検討することによって,ロラの理論解析を行う。
この枠組みでは,LoRA行列の単純な再パラメータ化により,低ランク行列推定プロセスが顕著に高速化できることが示されている。
特に、再パラメータ化は、所望の推定誤差を達成するために必要なデータを指数関数から多項式スケールに削減できることを示す。
この知見に触発されて,軽量MPPを用いてLoRA行列の再パラメータ化を行うReparameterized Low-rank Adaptation (RepLoRA)を提案する。
複数の領域にわたる大規模な実験では、RepLoRAがバニラロラを一貫して上回っていることが示されている。
特に、限られたデータで、RepLoRAは最大40.0%のマージンでLoRAを超え、トレーニングデータのわずか30.0%でLoRAのパフォーマンスを達成する。
関連論文リスト
- LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
低ランク適応 (LoRA) は、メモリ要求を低減し、LLMのパラメータ効率の高い微調整法である。
本稿では,LoRA最適化のための適応行列プレコンディショニング手法であるLoRA-RITEを紹介する。
論文 参考訳(メタデータ) (2024-10-27T22:57:12Z) - MiLoRA: Efficient Mixture of Low-Rank Adaptation for Large Language Models Fine-tuning [9.91790333647256]
低ランク適応法(LoRA)とその混合実験法(MOE)は,高効率なパラメータ効率微調整法(PEFT)である。
新規かつ効率的なLoRA変種であるMiLoRAを提案する。
MiLoRAは、各LoRAモジュールを専門家として考慮し、プロンプト対応のルーティング機構を採用することで、従来のMOEスタイルのLoRAメソッドと異なる。
論文 参考訳(メタデータ) (2024-10-23T17:04:40Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) は、ファインチューニングモデルの一般的なテクニックである。
LoRAは、フルパラメータの微調整と比較すると、しばしば実行されます。
本稿では,LoRA手法の適応率を厳密に分析するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-10T18:51:53Z) - RoLoRA: Fine-tuning Rotated Outlier-free LLMs for Effective Weight-Activation Quantization [38.23587031169402]
有効重量活性化量子化のための最初のLoRA方式であるRoLoRAを提案する。
我々は,LLaMA2-7B/13B,LLaMA3-8Bモデルにおけるロロラの評価を行い,最大29.5%の精度で4ビットの重量活性化量子化LLaMA2-13Bを実現した。
論文 参考訳(メタデータ) (2024-07-10T20:52:18Z) - Mixture of LoRA Experts [87.50120181861362]
本稿では,階層的制御と未分散分岐選択を利用する LoRA Experts (MoLE) アプローチを提案する。
MoLEアプローチは直接算術マージよりも優れたLoRA融合性能を実現する。
論文 参考訳(メタデータ) (2024-04-21T11:59:53Z) - LoRA Dropout as a Sparsity Regularizer for Overfitting Control [18.992276878667997]
そこで本研究では,LoRA方式のドロップアウト機構を提案する。
適切な空間性は、経験的リスクと一般化リスクのギャップを狭めるのに役立ちます。
論文 参考訳(メタデータ) (2024-04-15T09:32:12Z) - PRoLoRA: Partial Rotation Empowers More Parameter-Efficient LoRA [45.38491644250814]
部分回転型低ランク適応(PRoLoRA)は層内共有機構である。
PRoLoRAはその利点を保ち、ピアパラメータ共有手法の欠点を効果的に回避する。
実験によりPRoLoRAのパラメータ効率が著しく向上した。
論文 参考訳(メタデータ) (2024-02-24T13:39:05Z) - LoRA-drop: Efficient LoRA Parameter Pruning based on Output Evaluation [27.123271324468657]
Low-Rank Adaptation (LoRA)は、現在最も一般的に使われている言語である。
効率的な微細チューニング法(PEFT)。
各レイヤの補助パラメータを導入し、限られたコンピューティングリソースの下で事前訓練されたモデルを微調整する。
しかし、より大きなモデルにスケールアップする際には、依然としてリソース消費の課題に直面している。
論文 参考訳(メタデータ) (2024-02-12T15:34:56Z) - LoRAPrune: Structured Pruning Meets Low-Rank Parameter-Efficient Fine-Tuning [56.88751562302793]
低ランク適応 (LoRA) が大型言語モデル (LLM) に登場した。
LoRAPruneは、高度にメモリ効率の良い正確な構造化プルーンドモデルを提供する新しいフレームワークである。
LoRAPruneはWikiText2では4.81、TBでは3.46、メモリ使用量は52.6%減少している。
論文 参考訳(メタデータ) (2023-05-28T15:15:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。