IAO Prompting: Making Knowledge Flow Explicit in LLMs through Structured Reasoning Templates
- URL: http://arxiv.org/abs/2502.03080v1
- Date: Wed, 05 Feb 2025 11:14:20 GMT
- Title: IAO Prompting: Making Knowledge Flow Explicit in LLMs through Structured Reasoning Templates
- Authors: Aissatou Diallo, Antonis Bikakis, Luke Dickens, Anthony Hunter, Rob Miller,
- Abstract summary: We introduce IAO (Input-Action-Output), a structured template-based method that explicitly models how Large Language Models access and apply their knowledge.
IAO decomposes problems into sequential steps, each clearly identifying the input knowledge being used, the action being performed, and the resulting output.
Our findings provide insights into both knowledge representation within LLMs and methods for more reliable knowledge application.
- Score: 7.839338724237275
- License:
- Abstract: While Large Language Models (LLMs) demonstrate impressive reasoning capabilities, understanding and validating their knowledge utilization remains challenging. Chain-of-thought (CoT) prompting partially addresses this by revealing intermediate reasoning steps, but the knowledge flow and application remain implicit. We introduce IAO (Input-Action-Output) prompting, a structured template-based method that explicitly models how LLMs access and apply their knowledge during complex reasoning tasks. IAO decomposes problems into sequential steps, each clearly identifying the input knowledge being used, the action being performed, and the resulting output. This structured decomposition enables us to trace knowledge flow, verify factual consistency, and identify potential knowledge gaps or misapplications. Through experiments across diverse reasoning tasks, we demonstrate that IAO not only improves zero-shot performance but also provides transparency in how LLMs leverage their stored knowledge. Human evaluation confirms that this structured approach enhances our ability to verify knowledge utilization and detect potential hallucinations or reasoning errors. Our findings provide insights into both knowledge representation within LLMs and methods for more reliable knowledge application.
Related papers
- KaLM: Knowledge-aligned Autoregressive Language Modeling via Dual-view Knowledge Graph Contrastive Learning [74.21524111840652]
This paper proposes textbfKaLM, a textitKnowledge-aligned Language Modeling approach.
It fine-tunes autoregressive large language models to align with KG knowledge via the joint objective of explicit knowledge alignment and implicit knowledge alignment.
Notably, our method achieves a significant performance boost in evaluations of knowledge-driven tasks.
arXiv Detail & Related papers (2024-12-06T11:08:24Z) - Unveiling Factual Recall Behaviors of Large Language Models through Knowledge Neurons [13.266817091775042]
We investigate whether Large Language Models (LLMs) actively recall or retrieve their internal repositories of factual knowledge when faced with reasoning tasks.
We reveal that LLMs fail to harness the critical factual associations under certain circumstances.
We assess the effect of Chain-of-Thought (CoT) prompting, a powerful technique for addressing complex reasoning tasks.
arXiv Detail & Related papers (2024-08-06T15:07:08Z) - Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
Large Language Models (LLMs) possess extensive knowledge and strong capabilities in performing in-context reasoning.
This paper focuses on a significant aspect of out-of-context reasoning: Out-of-Context Knowledge Reasoning (OCKR), which is to combine multiple knowledge to infer new knowledge.
arXiv Detail & Related papers (2024-06-11T15:58:59Z) - KnowTuning: Knowledge-aware Fine-tuning for Large Language Models [83.5849717262019]
We propose a knowledge-aware fine-tuning (KnowTuning) method to improve fine-grained and coarse-grained knowledge awareness of LLMs.
KnowTuning generates more facts with less factual error rate under fine-grained facts evaluation.
arXiv Detail & Related papers (2024-02-17T02:54:32Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
This paper proposes Knowledge Graph-based Retrofitting (KGR) to mitigate factual hallucination during the reasoning process.
Experiments show that KGR can significantly improve the performance of LLMs on factual QA benchmarks.
arXiv Detail & Related papers (2023-11-22T11:08:38Z) - Knowledge Rumination for Pre-trained Language Models [77.55888291165462]
We propose a new paradigm dubbed Knowledge Rumination to help the pre-trained language model utilize related latent knowledge without retrieving it from the external corpus.
We apply the proposed knowledge rumination to various language models, including RoBERTa, DeBERTa, and GPT-3.
arXiv Detail & Related papers (2023-05-15T15:47:09Z) - UNTER: A Unified Knowledge Interface for Enhancing Pre-trained Language
Models [100.4659557650775]
We propose a UNified knowledge inTERface, UNTER, to provide a unified perspective to exploit both structured knowledge and unstructured knowledge.
With both forms of knowledge injected, UNTER gains continuous improvements on a series of knowledge-driven NLP tasks.
arXiv Detail & Related papers (2023-05-02T17:33:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.