Reveal the Mystery of DPO: The Connection between DPO and RL Algorithms
- URL: http://arxiv.org/abs/2502.03095v1
- Date: Wed, 05 Feb 2025 11:41:43 GMT
- Title: Reveal the Mystery of DPO: The Connection between DPO and RL Algorithms
- Authors: Xuerui Su, Yue Wang, Jinhua Zhu, Mingyang Yi, Feng Xu, Zhiming Ma, Yuting Liu,
- Abstract summary: Reinforcement Learning from Human Feedback (RLHF) algorithms have been introduced to improve model safety and alignment with human preferences.
These algorithms can be divided into two main frameworks based on whether they require an explicit reward (or value) function for training.
We focus on three key aspects related to DPO, RL, and other RLHF algorithms.
- Score: 23.399177886166882
- License:
- Abstract: With the rapid development of Large Language Models (LLMs), numerous Reinforcement Learning from Human Feedback (RLHF) algorithms have been introduced to improve model safety and alignment with human preferences. These algorithms can be divided into two main frameworks based on whether they require an explicit reward (or value) function for training: actor-critic-based Proximal Policy Optimization (PPO) and alignment-based Direct Preference Optimization (DPO). The mismatch between DPO and PPO, such as DPO's use of a classification loss driven by human-preferred data, has raised confusion about whether DPO should be classified as a Reinforcement Learning (RL) algorithm. To address these ambiguities, we focus on three key aspects related to DPO, RL, and other RLHF algorithms: (1) the construction of the loss function; (2) the target distribution at which the algorithm converges; (3) the impact of key components within the loss function. Specifically, we first establish a unified framework named UDRRA connecting these algorithms based on the construction of their loss functions. Next, we uncover their target policy distributions within this framework. Finally, we investigate the critical components of DPO to understand their impact on the convergence rate. Our work provides a deeper understanding of the relationship between DPO, RL, and other RLHF algorithms, offering new insights for improving existing algorithms.
Related papers
- REINFORCE++: A Simple and Efficient Approach for Aligning Large Language Models [2.9668561417979356]
We present REINFORCE++, an enhanced variant of the classical REINFORCE algorithm that incorporates key optimization techniques from PPO while eliminating the need for a critic network.
REINFORCE++ achieves three primary objectives: (1) simplicity (2) enhanced training stability, and (3) reduced computational overhead.
arXiv Detail & Related papers (2025-01-04T02:08:06Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.
We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.
We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - Understanding Reference Policies in Direct Preference Optimization [50.67309013764383]
Direct Preference Optimization (DPO) has become a widely used training method for the instruction fine-tuning of large language models (LLMs)
This work explores an under-investigated aspect of DPO - its dependency on the reference model or policy.
arXiv Detail & Related papers (2024-07-18T17:08:10Z) - Learning Reward and Policy Jointly from Demonstration and Preference Improves Alignment [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.
The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.
We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - From $r$ to $Q^*$: Your Language Model is Secretly a Q-Function [50.812404038684505]
We show that we can derive DPO in the token-level MDP as a general inverse Q-learning algorithm, which satisfies the Bellman equation.
We discuss applications of our work, including information elicitation in multi-turn dialogue, reasoning, agentic applications and end-to-end training of multi-model systems.
arXiv Detail & Related papers (2024-04-18T17:37:02Z) - Secrets of RLHF in Large Language Models Part I: PPO [81.01936993929127]
Large language models (LLMs) have formulated a blueprint for the advancement of artificial general intelligence.
reinforcement learning with human feedback (RLHF) emerges as the pivotal technological paradigm underpinning this pursuit.
In this report, we dissect the framework of RLHF, re-evaluate the inner workings of PPO, and explore how the parts comprising PPO algorithms impact policy agent training.
arXiv Detail & Related papers (2023-07-11T01:55:24Z) - Implementation Matters in Deep Policy Gradients: A Case Study on PPO and
TRPO [90.90009491366273]
We study the roots of algorithmic progress in deep policy gradient algorithms through a case study on two popular algorithms.
Specifically, we investigate the consequences of "code-level optimizations:"
Our results show that they (a) are responsible for most of PPO's gain in cumulative reward over TRPO, and (b) fundamentally change how RL methods function.
arXiv Detail & Related papers (2020-05-25T16:24:59Z) - Mirror Descent Policy Optimization [41.46894905097985]
We propose an efficient RL algorithm, called em mirror descent policy optimization (MDPO)
MDPO iteratively updates the policy by em approximately solving a trust-region problem.
We highlight the connections between on-policy MDPO and two popular trust-region RL algorithms: TRPO and PPO, and show that explicitly enforcing the trust-region constraint is in fact em not a necessity for high performance gains in TRPO.
arXiv Detail & Related papers (2020-05-20T01:30:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.