A Unified and General Humanoid Whole-Body Controller for Fine-Grained Locomotion
- URL: http://arxiv.org/abs/2502.03206v2
- Date: Thu, 06 Feb 2025 14:12:14 GMT
- Title: A Unified and General Humanoid Whole-Body Controller for Fine-Grained Locomotion
- Authors: Yufei Xue, Wentao Dong, Minghuan Liu, Weinan Zhang, Jiangmiao Pang,
- Abstract summary: We propose HugWBC: a unified and general humanoid whole-body controller for fine-grained locomotion.
HuGWBC enables real-world humanoid robots to produce various natural gaits, including walking (running), jumping, standing, and hopping, with customizable parameters.
HuGWBC also supports real-time interventions from external upper-body controllers like teleoperation, enabling loco-manipulation.
- Score: 30.418274871034775
- License:
- Abstract: Locomotion is a fundamental skill for humanoid robots. However, most existing works made locomotion a single, tedious, unextendable, and passive movement. This limits the kinematic capabilities of humanoid robots. In contrast, humans possess versatile athletic abilities-running, jumping, hopping, and finely adjusting walking parameters such as frequency, and foot height. In this paper, we investigate solutions to bring such versatility into humanoid locomotion and thereby propose HUGWBC: a unified and general humanoid whole-body controller for fine-grained locomotion. By designing a general command space in the aspect of tasks and behaviors, along with advanced techniques like symmetrical loss and intervention training for learning a whole-body humanoid controlling policy in simulation, HugWBC enables real-world humanoid robots to produce various natural gaits, including walking (running), jumping, standing, and hopping, with customizable parameters such as frequency, foot swing height, further combined with different body height, waist rotation, and body pitch, all in one single policy. Beyond locomotion, HUGWBC also supports real-time interventions from external upper-body controllers like teleoperation, enabling loco-manipulation while maintaining precise control under any locomotive behavior. Our experiments validate the high tracking accuracy and robustness of HUGWBC with/without upper-body intervention for all commands, and we further provide an in-depth analysis of how the various commands affect humanoid movement and offer insights into the relationships between these commands. To our knowledge, HugWBC is the first humanoid whole-body controller that supports such fine-grained locomotion behaviors with high robustness and flexibility.
Related papers
- HOMIE: Humanoid Loco-Manipulation with Isomorphic Exoskeleton Cockpit [52.12750762494588]
Current humanoid teleoperation systems either lack reliable low-level control policies, or struggle to acquire accurate whole-body control commands.
We propose a novel humanoid teleoperation cockpit integrates a humanoid loco-manipulation policy and a low-cost exoskeleton-based hardware system.
arXiv Detail & Related papers (2025-02-18T16:33:38Z) - Mobile-TeleVision: Predictive Motion Priors for Humanoid Whole-Body Control [18.269588421166503]
Humanoid robots require robust lower-body locomotion and precise upper-body manipulation.
Recent Reinforcement Learning approaches provide whole-body loco-manipulation policies, but lack precise manipulation.
We introduce high-body kinematic control using inverses (IK) and motion for precise manipulation.
We show that CVAE features are crucial for stability and robustness, and significantly outperforms RL-based whole-body control in precise manipulation.
arXiv Detail & Related papers (2024-12-10T18:59:50Z) - Learning Multi-Modal Whole-Body Control for Real-World Humanoid Robots [13.229028132036321]
Masked Humanoid Controller (MHC) supports standing, walking, and mimicry of whole and partial-body motions.
MHC imitates partially masked motions from a library of behaviors spanning standing, walking, optimized reference trajectories, re-targeted video clips, and human motion capture data.
We demonstrate sim-to-real transfer on the real-world Digit V3 humanoid robot.
arXiv Detail & Related papers (2024-07-30T09:10:24Z) - Visual Whole-Body Control for Legged Loco-Manipulation [22.50054654508986]
We study the problem of mobile manipulation using legged robots equipped with an arm.
We propose a framework that can conduct the whole-body control autonomously with visual observations.
arXiv Detail & Related papers (2024-03-25T17:26:08Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
This paper presents a study on using deep reinforcement learning to create dynamic locomotion controllers for bipedal robots.
We develop a general control solution that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and standing.
This work pushes the limits of agility for bipedal robots through extensive real-world experiments.
arXiv Detail & Related papers (2024-01-30T10:48:43Z) - Universal Humanoid Motion Representations for Physics-Based Control [71.46142106079292]
We present a universal motion representation that encompasses a comprehensive range of motor skills for physics-based humanoid control.
We first learn a motion imitator that can imitate all of human motion from a large, unstructured motion dataset.
We then create our motion representation by distilling skills directly from the imitator.
arXiv Detail & Related papers (2023-10-06T20:48:43Z) - Barkour: Benchmarking Animal-level Agility with Quadruped Robots [70.97471756305463]
We introduce the Barkour benchmark, an obstacle course to quantify agility for legged robots.
Inspired by dog agility competitions, it consists of diverse obstacles and a time based scoring mechanism.
We present two methods for tackling the benchmark.
arXiv Detail & Related papers (2023-05-24T02:49:43Z) - GenLoco: Generalized Locomotion Controllers for Quadrupedal Robots [87.32145104894754]
We introduce a framework for training generalized locomotion (GenLoco) controllers for quadrupedal robots.
Our framework synthesizes general-purpose locomotion controllers that can be deployed on a large variety of quadrupedal robots.
We show that our models acquire more general control strategies that can be directly transferred to novel simulated and real-world robots.
arXiv Detail & Related papers (2022-09-12T15:14:32Z) - Learning Quadrupedal Locomotion over Challenging Terrain [68.51539602703662]
Legged locomotion can dramatically expand the operational domains of robotics.
Conventional controllers for legged locomotion are based on elaborate state machines that explicitly trigger the execution of motion primitives and reflexes.
Here we present a radically robust controller for legged locomotion in challenging natural environments.
arXiv Detail & Related papers (2020-10-21T19:11:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.