Information Theoretic Analysis of PUF-Based Tamper Protection
- URL: http://arxiv.org/abs/2502.03221v1
- Date: Wed, 05 Feb 2025 14:39:41 GMT
- Title: Information Theoretic Analysis of PUF-Based Tamper Protection
- Authors: Georg Maringer, Matthias Hiller,
- Abstract summary: We take a step back from the implementation to analyze theoretical properties and limits.
We apply zero leakage output quantization to existing quantization schemes and the reconstruction error probability under zero leakage.
Our results show for example that for a practical scenario one needs at least 459 PUF cells using 3 bit quantization to achieve a security level of 128 bit.
- Score: 2.447795279790662
- License:
- Abstract: Physical Unclonable Functions (PUFs) enable physical tamper protection for high-assurance devices without needing a continuous power supply that is active over the entire lifetime of the device. Several methods for PUF-based tamper protection have been proposed together with practical quantization and error correction schemes. In this work we take a step back from the implementation to analyze theoretical properties and limits. We apply zero leakage output quantization to existing quantization schemes and minimize the reconstruction error probability under zero leakage. We apply wiretap coding within a helper data algorithm to enable a reliable key reconstruction for the legitimate user while guaranteeing a selectable reconstruction complexity for an attacker, analogously to the security level for a cryptographic algorithm for the attacker models considered in this work. We present lower bounds on the achievable key rates depending on the attacker's capabilities in the asymptotic and finite blocklength regime to give fundamental security guarantees even if the attacker gets partial information about the PUF response and the helper data. Furthermore, we present converse bounds on the number of PUF cells. Our results show for example that for a practical scenario one needs at least 459 PUF cells using 3 bit quantization to achieve a security level of 128 bit.
Related papers
- Pseudorandom quantum authentication [0.8204952610951527]
We introduce the pseudorandom quantum authentication scheme (PQAS)
It is an efficient method for quantum states that relies solely on the existence of pseudorandom unitaries (PRUs)
arXiv Detail & Related papers (2025-01-01T20:46:37Z) - BiCert: A Bilinear Mixed Integer Programming Formulation for Precise Certified Bounds Against Data Poisoning Attacks [62.897993591443594]
Data poisoning attacks pose one of the biggest threats to modern AI systems.
Data poisoning attacks pose one of the biggest threats to modern AI systems.
Data poisoning attacks pose one of the biggest threats to modern AI systems.
arXiv Detail & Related papers (2024-12-13T14:56:39Z) - Discrete-modulated continuous-variable quantum key distribution secure against general attacks [0.0]
This work presents a security analysis of DM-CV-QKD against general sequential attacks, including finite-size effects.
Remarkably, our proof considers attacks that are neither independent nor identical, and makes no assumptions about the Hilbert space dimension of the receiver.
arXiv Detail & Related papers (2024-09-04T11:50:18Z) - Systematic Use of Random Self-Reducibility against Physical Attacks [10.581645335323655]
This work presents a novel, black-box software-based countermeasure against physical attacks including power side-channel and fault-injection attacks.
The approach uses the concept of random self-reducibility and self-correctness to add randomness and redundancy in the execution for protection.
An end-to-end implementation of this countermeasure is demonstrated for RSA-CRT signature algorithm and Kyber Key Generation public key cryptosystems.
arXiv Detail & Related papers (2024-05-08T16:31:41Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Robust Control for Dynamical Systems With Non-Gaussian Noise via Formal
Abstractions [59.605246463200736]
We present a novel controller synthesis method that does not rely on any explicit representation of the noise distributions.
First, we abstract the continuous control system into a finite-state model that captures noise by probabilistic transitions between discrete states.
We use state-of-the-art verification techniques to provide guarantees on the interval Markov decision process and compute a controller for which these guarantees carry over to the original control system.
arXiv Detail & Related papers (2023-01-04T10:40:30Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
We consider vertical logistic regression (VLR) trained with mini-batch descent gradient.
We provide a comprehensive and rigorous privacy analysis of VLR in a class of open-source Federated Learning frameworks.
arXiv Detail & Related papers (2022-07-19T05:47:30Z) - Penalized Proximal Policy Optimization for Safe Reinforcement Learning [68.86485583981866]
We propose Penalized Proximal Policy Optimization (P3O), which solves the cumbersome constrained policy iteration via a single minimization of an equivalent unconstrained problem.
P3O utilizes a simple-yet-effective penalty function to eliminate cost constraints and removes the trust-region constraint by the clipped surrogate objective.
We show that P3O outperforms state-of-the-art algorithms with respect to both reward improvement and constraint satisfaction on a set of constrained locomotive tasks.
arXiv Detail & Related papers (2022-05-24T06:15:51Z) - Quantum Lock: A Provable Quantum Communication Advantage [2.9562795446317964]
This paper proposes a generic design of provably secure PUFs, called hybrid locked PUFs(HLPUFs)
An HLPUF uses a classical PUF, and encodes the output into non-orthogonal quantum states to hide the outcomes of the underlying CPUF from any adversary.
We show that by exploiting non-classical properties of quantum states, the HLPUF allows the server to reuse the challenge-response pairs for further client authentication.
arXiv Detail & Related papers (2021-10-18T17:01:46Z) - Efficient Construction of Quantum Physical Unclonable Functions with
Unitary t-designs [1.7403133838762446]
We study the noise-resilience of QPUF_t against specific types of noise, unitary noise, and show that some resilience can be achieved.
To make the noise-resilience more realistic and meaningful, we conclude that some notion of error mitigation or correction should be introduced.
arXiv Detail & Related papers (2021-01-14T16:14:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.