Partial Blind Quantum Computation
- URL: http://arxiv.org/abs/2503.10007v1
- Date: Thu, 13 Mar 2025 03:31:12 GMT
- Title: Partial Blind Quantum Computation
- Authors: Youngkyung Lee, Doyoung Chung,
- Abstract summary: Blind Quantum Computation (BQC) protocols enable clients with limited quantum resources to delegate computations while concealing both inputs and circuit details.<n>Applying BQC uniformly to an entire quantum circuit incurs additional quantum resources and computational overhead.<n>We propose a selective application of BQC that targets only the critical components of quantum circuits.
- Score: 0.5755004576310334
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Quantum computing is rapidly advancing toward cloud-based services, raising significant concerns about the privacy and security of computations outsourced to untrusted quantum servers. Traditional Blind Quantum Computation (BQC) protocols enable clients with limited quantum resources to delegate computations while concealing both inputs and circuit details. However, applying BQC uniformly to an entire quantum circuit incurs additional quantum resources and computational overhead, which can be a significant burden in practical implementations. In many cases, such as Grover's algorithm, only specific subroutines-like oracles-contain sensitive information, while the rest of the circuit does not require the same level of protection. Therefore, selectively applying BQC to critical components can enhance computational efficiency while maintaining security. In this work, we propose a selective application of BQC that targets only the critical components of quantum circuits. By integrating techniques from Quantum Homomorphic Encryption (QHE) and Universal Blind Quantum Computation (UBQC), our approach secures the sensitive subcircuits while allowing the remaining, non-sensitive portions to be executed more efficiently. In our framework, BQC-protected sections output quantum states that are encrypted via bit-flip and phase-flip operations, and we devise a mechanism based on selective X and Z gate corrections to seamlessly interface these with unprotected sections. We provide a security analysis demonstrating that our selective BQC approach preserves universality, correctness, and blindness, and we illustrate its practical advantages through an application to Grover's algorithm. This work paves the way for more efficient and practical secure quantum computing on near-term devices.
Related papers
- E-LoQ: Enhanced Locking for Quantum Circuit IP Protection [7.692750040732365]
We propose an enhanced locking technique for quantum circuits (E-LoQ)<n>Compared to previous work that used one qubit for each key bit, our approach achieves higher security levels.<n>Our results demonstrate that E-LoQ effectively conceals the function of the original quantum circuit, with an average fidelity degradation of less than 1%.
arXiv Detail & Related papers (2024-12-22T17:29:24Z) - Quantum Scheme for Private Set Intersection and Union Cardinality based on Quantum Homomorphic Encryption [8.715631190576067]
A novel quantum private set intersection and union cardinality protocol is proposed, accompanied by the corresponding quantum circuits.
Based on quantum homomorphic encryption, the protocol allows the intersection and union cardinality of users' private sets to be computed on quantum-encrypted data.
arXiv Detail & Related papers (2024-12-02T01:31:06Z) - Quantum Indistinguishable Obfuscation via Quantum Circuit Equivalence [6.769315201275599]
Quantum computing solutions are increasingly deployed in commercial environments through delegated computing.
One of the most critical issues is to guarantee the confidentiality and proprietary of quantum implementations.
Since the proposal of general-purpose indistinguishability obfuscation (iO) and functional encryption schemes, iO has emerged as a seemingly versatile cryptography primitive.
arXiv Detail & Related papers (2024-11-19T07:37:24Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Tuning Quantum Computing Privacy through Quantum Error Correction [12.475140331375666]
We propose to leverage quantum error correction techniques to reduce quantum computing errors.
We show that QEC is a feasible way to regulate the degree of privacy protection in quantum computing.
arXiv Detail & Related papers (2023-12-22T08:35:23Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
arXiv Detail & Related papers (2023-05-18T06:24:45Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
Variational quantum algorithms (VQAs) are one of the most promising candidates for achieving quantum advantages on quantum devices.
The private data of clients may be leaked to quantum servers in such a quantum cloud model.
A novel quantum homomorphic encryption (QHE) scheme is constructed for quantum servers to calculate encrypted data.
arXiv Detail & Related papers (2023-01-25T07:00:13Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Unifying Quantum Verification and Error-Detection: Theory and Tools for Optimisations [0.5825410941577593]
Cloud-based quantum computing has become vital to provide strong guarantees that computations delegated by clients to quantum service providers have been executed faithfully.
Current protocols lack at least one of the following three ingredients: composability, noise-robustness and modularity.
This paper lays out the fundamental structure of SDQC protocols, namely mixing two components: the Cryptography which the client would like the server to perform and tests that are designed to detect a server's malicious behaviour.
Changing the types of tests and how they are mixed with the client's computation automatically yields new SDQC protocols with different security and noise-
arXiv Detail & Related papers (2022-06-01T17:03:07Z) - Delegating Multi-Party Quantum Computations vs. Dishonest Majority in
Two Quantum Rounds [0.0]
Multi-Party Quantum Computation (MPQC) has attracted a lot of attention as a potential killer-app for quantum networks.
We present a composable protocol achieving blindness and verifiability even in the case of a single honest client.
arXiv Detail & Related papers (2021-02-25T15:58:09Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.