Optimal Task Order for Continual Learning of Multiple Tasks
- URL: http://arxiv.org/abs/2502.03350v1
- Date: Wed, 05 Feb 2025 16:43:58 GMT
- Title: Optimal Task Order for Continual Learning of Multiple Tasks
- Authors: Ziyan Li, Naoki Hiratani,
- Abstract summary: Continual learning of multiple tasks remains a major challenge for neural networks.
Here, we investigate how task order influences continual learning and propose a strategy for optimizing it.
Our work thus presents a generalizable framework for task-order optimization in task-incremental continual learning.
- Score: 3.591122855617648
- License:
- Abstract: Continual learning of multiple tasks remains a major challenge for neural networks. Here, we investigate how task order influences continual learning and propose a strategy for optimizing it. Leveraging a linear teacher-student model with latent factors, we derive an analytical expression relating task similarity and ordering to learning performance. Our analysis reveals two principles that hold under a wide parameter range: (1) tasks should be arranged from the least representative to the most typical, and (2) adjacent tasks should be dissimilar. We validate these rules on both synthetic data and real-world image classification datasets (Fashion-MNIST, CIFAR-10, CIFAR-100), demonstrating consistent performance improvements in both multilayer perceptrons and convolutional neural networks. Our work thus presents a generalizable framework for task-order optimization in task-incremental continual learning.
Related papers
- Giving each task what it needs -- leveraging structured sparsity for tailored multi-task learning [4.462334751640166]
In the Multi-task Learning (MTL) framework, every task demands distinct feature representations, ranging from low-level to high-level attributes.
This work introduces Layer-d Multi-Task models that utilize structured sparsity to refine feature selection for individual tasks and enhance the performance of all tasks in a multi-task scenario.
arXiv Detail & Related papers (2024-06-05T08:23:38Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
We formulate it as a few-shot reinforcement learning problem where a task is characterized by a subtask graph.
Our multi-task subtask graph inferencer (MTSGI) first infers the common high-level task structure in terms of the subtask graph from the training tasks.
Our experiment results on 2D grid-world and complex web navigation domains show that the proposed method can learn and leverage the common underlying structure of the tasks for faster adaptation to the unseen tasks.
arXiv Detail & Related papers (2022-05-25T10:44:25Z) - Combining Modular Skills in Multitask Learning [149.8001096811708]
A modular design encourages neural models to disentangle and recombine different facets of knowledge to generalise more systematically to new tasks.
In this work, we assume each task is associated with a subset of latent discrete skills from a (potentially small) inventory.
We find that the modular design of a network significantly increases sample efficiency in reinforcement learning and few-shot generalisation in supervised learning.
arXiv Detail & Related papers (2022-02-28T16:07:19Z) - Multi-Task Learning with Sequence-Conditioned Transporter Networks [67.57293592529517]
We aim to solve multi-task learning through the lens of sequence-conditioning and weighted sampling.
We propose a new suite of benchmark aimed at compositional tasks, MultiRavens, which allows defining custom task combinations.
Second, we propose a vision-based end-to-end system architecture, Sequence-Conditioned Transporter Networks, which augments Goal-Conditioned Transporter Networks with sequence-conditioning and weighted sampling.
arXiv Detail & Related papers (2021-09-15T21:19:11Z) - Learning to Relate Depth and Semantics for Unsupervised Domain
Adaptation [87.1188556802942]
We present an approach for encoding visual task relationships to improve model performance in an Unsupervised Domain Adaptation (UDA) setting.
We propose a novel Cross-Task Relation Layer (CTRL), which encodes task dependencies between the semantic and depth predictions.
Furthermore, we propose an Iterative Self-Learning (ISL) training scheme, which exploits semantic pseudo-labels to provide extra supervision on the target domain.
arXiv Detail & Related papers (2021-05-17T13:42:09Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
We consider a problem known as multi-task learning, consisting of fitting a set of regression functions intended for solving different tasks.
In our novel formulation, we couple the parameters of these functions, so that they learn in their task specific domains while staying close to each other.
This facilitates cross-fertilization in which data collected across different domains help improving the learning performance at each other task.
arXiv Detail & Related papers (2020-10-24T21:35:57Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
Multi-task learning (MTL) techniques have shown promising results w.r.t. performance, computations and/or memory footprint.
We provide a well-rounded view on state-of-the-art deep learning approaches for MTL in computer vision.
arXiv Detail & Related papers (2020-04-28T09:15:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.