Minerva: A Programmable Memory Test Benchmark for Language Models
- URL: http://arxiv.org/abs/2502.03358v1
- Date: Wed, 05 Feb 2025 16:53:45 GMT
- Title: Minerva: A Programmable Memory Test Benchmark for Language Models
- Authors: Menglin Xia, Victor Ruehle, Saravan Rajmohan, Reza Shokri,
- Abstract summary: We present a framework for automatically generating a comprehensive set of tests to evaluate models' abilities to use their memory effectively.
We evaluate models on atomic tasks such as searching, recalling, editing, matching, comparing information in context memory.
Our benchmark enables an interpretable, detailed assessment of memory capabilities of LLMs.
- Score: 18.474144165594225
- License:
- Abstract: How effectively can LLM-based AI assistants utilize their memory (context) to perform various tasks? Traditional data benchmarks, which are often manually crafted, suffer from several limitations: they are static, susceptible to overfitting, difficult to interpret, and lack actionable insights--failing to pinpoint the specific capabilities a model lacks when it does not pass a test. In this paper, we present a framework for automatically generating a comprehensive set of tests to evaluate models' abilities to use their memory effectively. Our framework extends the range of capability tests beyond the commonly explored (passkey, key-value, needle in the haystack) search, a dominant focus in the literature. Specifically, we evaluate models on atomic tasks such as searching, recalling, editing, matching, comparing information in context memory, and performing basic operations when inputs are structured into distinct blocks, simulating real-world data. Additionally, we design composite tests to investigate the models' ability to maintain state while operating on memory. Our benchmark enables an interpretable, detailed assessment of memory capabilities of LLMs.
Related papers
- Detecting Memorization in Large Language Models [0.0]
Large language models (LLMs) have achieved impressive results in natural language processing but are prone to memorizing portions of their training data.
Traditional methods for detecting memorization rely on output probabilities or loss functions.
We introduce an analytical method that precisely detects memorization by examining neuron activations within the LLM.
arXiv Detail & Related papers (2024-12-02T00:17:43Z) - Generating Unseen Code Tests In Infinitum [1.0674604700001968]
We present a method for creating benchmark variations that generalize across coding tasks and programming languages.
We implement one benchmark, called textitauto-regression, for the task of text-to-code generation in Python.
arXiv Detail & Related papers (2024-07-29T08:11:20Z) - Elephants Never Forget: Testing Language Models for Memorization of
Tabular Data [21.912611415307644]
Large Language Models (LLMs) can be applied to a diverse set of tasks, but the critical issues of data contamination and memorization are often glossed over.
We introduce a variety of different techniques to assess the degrees of contamination, including statistical tests for conditional distribution modeling and four tests that identify memorization.
arXiv Detail & Related papers (2024-03-11T12:07:13Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - Scalable Performance Analysis for Vision-Language Models [26.45624201546282]
Joint vision-language models have shown great performance over a diverse set of tasks.
Our paper introduces a more scalable solution that relies on already annotated benchmarks.
We confirm previous findings that CLIP behaves like a bag of words model and performs better with nouns and verbs.
arXiv Detail & Related papers (2023-05-30T06:40:08Z) - RET-LLM: Towards a General Read-Write Memory for Large Language Models [53.288356721954514]
RET-LLM is a novel framework that equips large language models with a general write-read memory unit.
Inspired by Davidsonian semantics theory, we extract and save knowledge in the form of triplets.
Our framework exhibits robust performance in handling temporal-based question answering tasks.
arXiv Detail & Related papers (2023-05-23T17:53:38Z) - ALBench: A Framework for Evaluating Active Learning in Object Detection [102.81795062493536]
This paper contributes an active learning benchmark framework named as ALBench for evaluating active learning in object detection.
Developed on an automatic deep model training system, this ALBench framework is easy-to-use, compatible with different active learning algorithms, and ensures the same training and testing protocols.
arXiv Detail & Related papers (2022-07-27T07:46:23Z) - A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental
Learning [56.450090618578]
Class-Incremental Learning (CIL) aims to train a model with limited memory size to meet this requirement.
We show that when counting the model size into the total budget and comparing methods with aligned memory size, saving models do not consistently work.
We propose a simple yet effective baseline, denoted as MEMO for Memory-efficient Expandable MOdel.
arXiv Detail & Related papers (2022-05-26T08:24:01Z) - Improving Meta-learning for Low-resource Text Classification and
Generation via Memory Imitation [87.98063273826702]
We propose a memory imitation meta-learning (MemIML) method that enhances the model's reliance on support sets for task adaptation.
A theoretical analysis is provided to prove the effectiveness of our method.
arXiv Detail & Related papers (2022-03-22T12:41:55Z) - Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks [133.93803565077337]
retrieval-augmented generation models combine pre-trained parametric and non-parametric memory for language generation.
We show that RAG models generate more specific, diverse and factual language than a state-of-the-art parametric-only seq2seq baseline.
arXiv Detail & Related papers (2020-05-22T21:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.