Deep Learning-Based Approach for Identification of Potato Leaf Diseases Using Wrapper Feature Selection and Feature Concatenation
- URL: http://arxiv.org/abs/2502.03370v1
- Date: Wed, 05 Feb 2025 17:09:34 GMT
- Title: Deep Learning-Based Approach for Identification of Potato Leaf Diseases Using Wrapper Feature Selection and Feature Concatenation
- Authors: Muhammad Ahtsam Naeem, Muhammad Asim Saleem, Muhammad Imran Sharif, Shahzad Akber, Sajjad Saleem, Zahid Akhtar, Kamran Siddique,
- Abstract summary: We present an autonomous method based on image processing and machine learning to detect late blight disease affecting potato leaves.
This method achieves the highest accuracy of 99% using SVM by selecting 550 features.
- Score: 4.5964557330918225
- License:
- Abstract: The potato is a widely grown crop in many regions of the world. In recent decades, potato farming has gained incredible traction in the world. Potatoes are susceptible to several illnesses that stunt their development. This plant seems to have significant leaf disease. Early Blight and Late Blight are two prevalent leaf diseases that affect potato plants. The early detection of these diseases would be beneficial for enhancing the yield of this crop. The ideal solution is to use image processing to identify and analyze these disorders. Here, we present an autonomous method based on image processing and machine learning to detect late blight disease affecting potato leaves. The proposed method comprises four different phases: (1) Histogram Equalization is used to improve the quality of the input image; (2) feature extraction is performed using a Deep CNN model, then these extracted features are concatenated; (3) feature selection is performed using wrapper-based feature selection; (4) classification is performed using an SVM classifier and its variants. This proposed method achieves the highest accuracy of 99% using SVM by selecting 550 features.
Related papers
- PND-Net: Plant Nutrition Deficiency and Disease Classification using Graph Convolutional Network [18.778641229886393]
This article proposes a new deep learning method for plant nutrition deficiencies and disease classification using a graph convolutional network (GNN)
The proposed method, called Plant Nutrition Deficiency and Disease Network (PND-Net), is evaluated on two public datasets for nutrition deficiency, and two for disease classification using four CNNs.
arXiv Detail & Related papers (2024-10-16T17:01:28Z) - A Novel Feature Extraction Model for the Detection of Plant Disease from Leaf Images in Low Computational Devices [2.1990652930491854]
The proposed approach integrates various types of Deep Learning techniques to extract robust and discriminative features from leaf images.
The dataset contains 10,000 leaf photos from ten classes of tomato illnesses and one class of healthy leaves.
AlexNet has an accuracy score of 87%, with the benefit of being quick and lightweight, making it appropriate for use on embedded systems.
arXiv Detail & Related papers (2024-10-01T19:32:45Z) - PotatoGANs: Utilizing Generative Adversarial Networks, Instance Segmentation, and Explainable AI for Enhanced Potato Disease Identification and Classification [0.0]
Our research employs a novel approach termed as PotatoGANs.
Two types of Generative Adversarial Networks (GANs) are utilized to generate synthetic potato disease images.
Using the Inception score as a measure, our experiments show the better quality and realisticness of the images created by PotatoGANs.
arXiv Detail & Related papers (2024-05-12T17:00:52Z) - Transfer Learning With Densenet201 Architecture Model For Potato Leaf
Disease Classification [0.0]
This study uses a deep learning method with the DenseNet201 architecture.
The test results on this model resulted in a new accuracy for classifying potato leaf disease, namely 92.5%.
arXiv Detail & Related papers (2024-01-25T03:58:40Z) - Potato Leaf Disease Classification using Deep Learning: A Convolutional
Neural Network Approach [0.0]
Convolutional Neural Network (CNN) is used to classify potato leaf illnesses.
CNN model, with an overall accuracy of 99.1%, is highly accurate in identifying two kinds of potato leaf diseases.
arXiv Detail & Related papers (2023-11-04T07:16:37Z) - Seamless Iterative Semi-Supervised Correction of Imperfect Labels in
Microscopy Images [57.42492501915773]
In-vitro tests are an alternative to animal testing for the toxicity of medical devices.
Human fatigue plays a role in error making, making the use of deep learning appealing.
We propose Seamless Iterative Semi-Supervised correction of Imperfect labels (SISSI)
Our method successfully provides an adaptive early learning correction technique for object detection.
arXiv Detail & Related papers (2022-08-05T18:52:20Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
We propose a novel method based on a two-view leaf image representation and a hierarchical classification strategy for fine-grained recognition of plant species.
A deep metric based on Siamese convolutional neural networks is used to reduce the dependence on a large number of training samples and make the method scalable to new plant species.
arXiv Detail & Related papers (2020-05-18T21:57:47Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.