PND-Net: Plant Nutrition Deficiency and Disease Classification using Graph Convolutional Network
- URL: http://arxiv.org/abs/2410.12742v1
- Date: Wed, 16 Oct 2024 17:01:28 GMT
- Title: PND-Net: Plant Nutrition Deficiency and Disease Classification using Graph Convolutional Network
- Authors: Asish Bera, Debotosh Bhattacharjee, Ondrej Krejcar,
- Abstract summary: This article proposes a new deep learning method for plant nutrition deficiencies and disease classification using a graph convolutional network (GNN)
The proposed method, called Plant Nutrition Deficiency and Disease Network (PND-Net), is evaluated on two public datasets for nutrition deficiency, and two for disease classification using four CNNs.
- Score: 18.778641229886393
- License:
- Abstract: Crop yield production could be enhanced for agricultural growth if various plant nutrition deficiencies, and diseases are identified and detected at early stages. The deep learning methods have proven its superior performances in the automated detection of plant diseases and nutrition deficiencies from visual symptoms in leaves. This article proposes a new deep learning method for plant nutrition deficiencies and disease classification using a graph convolutional network (GNN), added upon a base convolutional neural network (CNN). Sometimes, a global feature descriptor might fail to capture the vital region of a diseased leaf, which causes inaccurate classification of disease. To address this issue, regional feature learning is crucial for a holistic feature aggregation. In this work, region-based feature summarization at multi-scales is explored using spatial pyramidal pooling for discriminative feature representation. A GCN is developed to capacitate learning of finer details for classifying plant diseases and insufficiency of nutrients. The proposed method, called Plant Nutrition Deficiency and Disease Network (PND-Net), is evaluated on two public datasets for nutrition deficiency, and two for disease classification using four CNNs. The best classification performances are: (a) 90.00% Banana and 90.54% Coffee nutrition deficiency; and (b) 96.18% Potato diseases and 84.30% on PlantDoc datasets using Xception backbone. Furthermore, additional experiments have been carried out for generalization, and the proposed method has achieved state-of-the-art performances on two public datasets, namely the Breast Cancer Histopathology Image Classification (BreakHis 40X: 95.50%, and BreakHis 100X: 96.79% accuracy) and Single cells in Pap smear images for cervical cancer classification (SIPaKMeD: 99.18% accuracy). Also, PND-Net achieves improved performances using five-fold cross validation.
Related papers
- Potato Leaf Disease Classification using Deep Learning: A Convolutional
Neural Network Approach [0.0]
Convolutional Neural Network (CNN) is used to classify potato leaf illnesses.
CNN model, with an overall accuracy of 99.1%, is highly accurate in identifying two kinds of potato leaf diseases.
arXiv Detail & Related papers (2023-11-04T07:16:37Z) - An Efficient Transfer Learning-based Approach for Apple Leaf Disease
Classification [0.0]
This study presents a technique for identifying apple leaf diseases based on transfer learning.
The competence of the proposed pipeline has been evaluated on the apple leaf disease subset from the publicly available PlantVillage' dataset.
arXiv Detail & Related papers (2023-04-10T08:48:36Z) - Explainable vision transformer enabled convolutional neural network for
plant disease identification: PlantXViT [11.623005206620498]
Plant diseases are the primary cause of crop losses globally, with an impact on the world economy.
In this study, a Vision Transformer enabled Convolutional Neural Network model called "PlantXViT" is proposed for plant disease identification.
The proposed model has a lightweight structure with only 0.8 million trainable parameters, which makes it suitable for IoT-based smart agriculture services.
arXiv Detail & Related papers (2022-07-16T12:05:06Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - GKD: Semi-supervised Graph Knowledge Distillation for Graph-Independent
Inference [41.348451615460796]
We propose a novel semi-supervised approach named GKD based on knowledge distillation.
We perform experiments on two public datasets for diagnosing Autism spectrum disorder, and Alzheimer's disease.
According to these experiments, GKD outperforms the previous graph-based deep learning methods in terms of accuracy, AUC, and Macro F1.
arXiv Detail & Related papers (2021-04-08T08:23:37Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - Real-time Plant Health Assessment Via Implementing Cloud-based Scalable
Transfer Learning On AWS DeepLens [0.8714677279673736]
We propose a machine learning approach to detect and classify plant leaf disease.
We use scalable transfer learning on AWS SageMaker and importing it on AWS DeepLens for real-time practical usability.
Our experiments on extensive image data set of healthy and unhealthy leaves of fruits and vegetables showed an accuracy of 98.78% with a real-time diagnosis of plant leaves diseases.
arXiv Detail & Related papers (2020-09-09T05:23:34Z) - A Self-ensembling Framework for Semi-supervised Knee Cartilage Defects
Assessment with Dual-Consistency [40.67137486295487]
We propose a novel approach for knee cartilage defects assessment, including severity classification and lesion localization.
A self-ensembling framework is composed of a student network and a teacher network with the same structure.
Experiments show that the proposed method can significantly improve the self-ensembling performance in both knee cartilage defects classification and localization.
arXiv Detail & Related papers (2020-05-19T04:47:25Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
We propose a novel method based on a two-view leaf image representation and a hierarchical classification strategy for fine-grained recognition of plant species.
A deep metric based on Siamese convolutional neural networks is used to reduce the dependence on a large number of training samples and make the method scalable to new plant species.
arXiv Detail & Related papers (2020-05-18T21:57:47Z) - The Plant Pathology 2020 challenge dataset to classify foliar disease of
apples [0.0]
Apple orchards in the U.S. are under constant threat from a large number of pathogens and insects. Appropriate and timely deployment of disease management depends on early disease detection.
We have manually captured 3,651 high-quality, real-life symptom images of multiple apple foliar diseases.
A subset, expert-annotated to create a pilot dataset for apple scab, cedar apple rust, and healthy leaves, was made available to the Kaggle community for 'Plant Pathology Challenge'
arXiv Detail & Related papers (2020-04-24T19:36:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.