論文の概要: Investigating Corporate Social Responsibility Initiatives: Examining the case of corporate Covid-19 response
- arxiv url: http://arxiv.org/abs/2502.03421v1
- Date: Wed, 05 Feb 2025 18:09:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:26:22.975494
- Title: Investigating Corporate Social Responsibility Initiatives: Examining the case of corporate Covid-19 response
- Title(参考訳): 企業社会責任イニシアティブの調査:コーポレート・コビッドの対応事例の検討
- Authors: Meheli Basu, Aniruddha Dutta, Purvi Shah,
- Abstract要約: 本稿では,政策立案者が最もポピュラーなトピック認識手法をどのように実装できるかを示す。
我々は,Covid-19パンデミックの早期および進行期の企業プレスリリースに,人気のあるNLP手法を適用した。
本研究で実施されるステップは、他の社会的意思決定コンテキストにおける関連文書から洞察を得るために複製することができる。
- 参考スコア(独自算出の注目度): 1.1060425537315088
- License:
- Abstract: In todays age of freely available information, policy makers have to take into account a huge amount of information while making decisions affecting relevant stakeholders. While increase in the amount of information sources and documents increases credibility of decisions based on the corpus of available text, it is challenging for policymakers to make sense of this information. This paper demonstrates how policy makers can implement some of the most popular topic recognition methods, Latent Dirichlet Allocation, Deep Distributed Representation method, text summarization approaches, Word Based Sentence Ranking method and TextRank for sentence extraction method, to sum up the content of large volume of documents to understand the gist of the overload of information. We have applied popular NLP methods to corporate press releases during the early period and advanced period of Covid-19 pandemic which has resulted in a global unprecedented health and socio-economic crisis, when policymaking and regulations have become especially important to standardize corporate practices for employee and social welfare in the face of similar future unseen crises. The steps undertaken in this study can be replicated to yield insights from relevant documents in any other social decision-making context.
- Abstract(参考訳): 今日の自由な情報の時代では、政策立案者は膨大な量の情報を考慮し、関連する利害関係者に影響を及ぼす決定を下さなければならない。
情報ソースや文書の増加は、利用可能なテキストのコーパスに基づいて意思決定の信頼性を高めるが、政策立案者がこの情報を理解することは困難である。
本稿では,多量の文書の内容を要約して情報過多を理解するために,政策立案者が最もポピュラーな話題認識手法,潜時ディリクレ割当法,深層分散表現法,テキスト要約法,ワードベース文ランク付け法,テキストランク付け法,テキストランクをいかに実装できるかを示す。
我々は、新型コロナウイルスのパンデミックが世界的に前例のない健康・社会経済危機を招いた初期の企業プレスリリースに、一般的なNLP手法を適用してきた。
本研究で実施されるステップは、他の社会的意思決定コンテキストにおける関連文書から洞察を得るために複製することができる。
関連論文リスト
- Con-ReCall: Detecting Pre-training Data in LLMs via Contrastive Decoding [118.75567341513897]
既存のメソッドは通常、ターゲットテキストを分離して分析するか、非メンバーコンテキストでのみ分析する。
Con-ReCallは、メンバと非メンバのコンテキストによって誘導される非対称な分布シフトを利用する新しいアプローチである。
論文 参考訳(メタデータ) (2024-09-05T09:10:38Z) - Time Series Analysis of Key Societal Events as Reflected in Complex
Social Media Data Streams [0.9790236766474201]
本研究では,ニッチなソーシャルメディアプラットフォームであるGABと,確立されたメッセージングサービスであるTelegramの物語進化について検討する。
我々のアプローチは、複数のソーシャルメディアドメインを調査し、他の方法では見えない重要な情報を排除するための新しいモードである。
主な知見は,(1) 時間線をデコンストラクトして, 解釈を改善するための有用なデータ機能を提供すること,(2) 一般化の基盤を提供する方法論を適用すること,である。
論文 参考訳(メタデータ) (2024-03-11T18:33:56Z) - EROS: Entity-Driven Controlled Policy Document Summarization [16.661448437719464]
制御された抽象要約を用いてポリシー文書の解釈可能性と可読性を向上させることを提案する。
プライバシー関連エンティティラベルをマークしたポリシー文書要約データセットであるPD-Sumを開発した。
提案モデルであるEROSは,スパン型エンティティ抽出モデルを用いて重要なエンティティを識別し,それらを用いて要約情報の内容を制御する。
論文 参考訳(メタデータ) (2024-02-29T21:44:50Z) - Leveraging Large Language Models for Topic Classification in the Domain
of Public Affairs [65.9077733300329]
大規模言語モデル (LLM) は公務員文書の分析を大幅に強化する可能性を秘めている。
LLMは、公共の分野など、ドメイン固有のドキュメントを処理するのに非常に役立ちます。
論文 参考訳(メタデータ) (2023-06-05T13:35:01Z) - Understanding misinformation in India: The case for a meaningful
regulatory approach for social media platforms [0.0]
本稿では,我が国の誤情報とその後の社会的・ビジネス的混乱の文脈に一貫性のある読解を導入することを目的とする。
文献資料はそれぞれの項目で言及されている。
論文 参考訳(メタデータ) (2022-06-19T15:14:06Z) - Fairness in Recommender Systems: Research Landscape and Future
Directions [119.67643184567623]
本稿は,近年の地域におけるフェアネスの概念と概念について概観する。
この分野での研究が現在どのように行われているのかを概観する。
全体として、最近の研究成果の分析は、ある研究のギャップを示している。
論文 参考訳(メタデータ) (2022-05-23T08:34:25Z) - Beyond Ads: Sequential Decision-Making Algorithms in Law and Public
Policy [2.762239258559568]
法と公共政策にシーケンシャルな意思決定アルゴリズムを採用するという約束と課題について検討する。
我々の主なテーマは、法律と公共政策が、機械学習コミュニティがまだ対応していない、異なる方法論上の課題を提起することです。
規制とガバナンスにおけるシーケンシャルな意思決定アルゴリズムの幅広い応用について論じる。
論文 参考訳(メタデータ) (2021-12-13T17:45:21Z) - Privacy-Constrained Policies via Mutual Information Regularized Policy Gradients [54.98496284653234]
報酬を最大化しつつ、行動を通じて特定の機密状態変数の開示を最小限に抑えながら、報酬を最大化する政策を訓練する課題を考察する。
本稿では, 感性状態と行動の相互情報に基づく正則化器を導入することで, この問題を解決する。
プライバシ制約のあるポリシーを最適化するためのモデルベース推定器を開発した。
論文 参考訳(メタデータ) (2020-12-30T03:22:35Z) - PolicyQA: A Reading Comprehension Dataset for Privacy Policies [77.79102359580702]
既存のWebサイトプライバシポリシ115のコーパスから算出した,25,017の理解スタイルの例を含むデータセットであるPolicyQAを提案する。
既存の2つのニューラルQAモデルを評価し、厳密な分析を行い、ポリシQAが提供する利点と課題を明らかにする。
論文 参考訳(メタデータ) (2020-10-06T09:04:58Z) - Policy Evaluation Networks [50.53250641051648]
我々は,簡潔な埋め込みにおいて重要なポリシー情報を保持できる,スケーラブルで差別化可能なフィンガープリント機構を導入する。
実験の結果、これらの3つの要素を組み合わせることで、トレーニングデータを生成するものよりも優れたポリシーを作成できることが示された。
論文 参考訳(メタデータ) (2020-02-26T23:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。