論文の概要: Two in context learning tasks with complex functions
- arxiv url: http://arxiv.org/abs/2502.03503v1
- Date: Wed, 05 Feb 2025 11:03:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 15:30:40.4664
- Title: Two in context learning tasks with complex functions
- Title(参考訳): 複雑な機能をもつ文脈学習の2つの課題
- Authors: Omar Naim, Nicholas Asher,
- Abstract要約: 変圧器モデルに対する数列およびテスト設定における数式関数を用いた文脈学習(ICL)の2つのタスクについて検討する。
本研究は, 注意層を持つモデルであっても, 任意の関数を近似できることを示すことによって, 線形関数の研究を一般化する。
我々のモデルは、複素関数の零点だけでなく、以前に見つからなかった関数のクラスを近似することもできる。
- 参考スコア(独自算出の注目度): 2.1178416840822027
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We examine two in context learning (ICL) tasks with mathematical functions in several train and test settings for transformer models. Our study generalizes work on linear functions by showing that small transformers, even models with attention layers only, can approximate arbitrary polynomial functions and hence continuous functions under certain conditions. Our models also can approximate previously unseen classes of polynomial functions, as well as the zeros of complex functions. Our models perform far better on this task than LLMs like GPT4 and involve complex reasoning when provided with suitable training data and methods. Our models also have important limitations; they fail to generalize outside of training distributions and so don't learn class forms of functions. We explain why this is so.
- Abstract(参考訳): 変圧器モデルに対する数列およびテスト設定における数式関数を用いた文脈学習(ICL)の2つのタスクについて検討する。
本研究では, 注意層のみを持つモデルであっても, 任意の多項式関数や連続関数を一定の条件下で近似できることを示すことにより, 線形関数の研究を一般化する。
我々のモデルは、複素函数の零点と同様に、以前に見つからなかった多項式函数のクラスを近似することもできる。
我々のモデルは GPT4 のような LLM よりもはるかに優れた性能を示しており、適切なトレーニングデータや手法が提供されると複雑な推論が伴う。
トレーニングディストリビューション以外では一般化できないため、クラスの関数形式を学ばないのです。
これがなぜそうなるのか説明します。
関連論文リスト
- Understanding In-Context Learning on Structured Manifolds: Bridging Attention to Kernel Methods [48.038668788625465]
In-context Learning (ICL) は自然言語と視覚領域において顕著な成功を収めた。
本研究では、多様体上のH"古い関数の回帰に対するICCの理論的研究を開始する。
本研究は, ICLにおける幾何学の役割に関する基礎的な知見と, 非線形モデルのICLを研究するためのノベルティクスツールを提供する。
論文 参考訳(メタデータ) (2025-06-12T17:56:26Z) - Neural ODE Transformers: Analyzing Internal Dynamics and Adaptive Fine-tuning [30.781578037476347]
高度にフレキシブルな非自律型ニューラル常微分方程式(ODE)を用いたトランスフォーマーアーキテクチャのモデリング手法を提案する。
提案モデルでは,ニューラルネットワークによる注目度とフィードフォワードブロックの重みをパラメータ化し,これらの重みを連続層インデックスの関数として表現する。
我々のニューラルODE変換器は、さまざまな構成やデータセットにわたるバニラ変換器に匹敵するパフォーマンスを示す。
論文 参考訳(メタデータ) (2025-03-03T09:12:14Z) - The Inherent Limits of Pretrained LLMs: The Unexpected Convergence of Instruction Tuning and In-Context Learning Capabilities [51.594836904623534]
本研究は,インコンテキストの例を用いて誘導されるベースモデルと,命令調整モデルが根本的に異なる機能を持つかどうかを考察する。
命令調整モデルの性能は,基本モデルのコンテキスト内性能と大きく相関していることを示す。
具体的には、この理解を命令付きモデルに拡張し、事前学習データも同様に、解決可能なタスクの制限境界を設定することを示唆する。
論文 参考訳(メタデータ) (2025-01-15T10:57:55Z) - Re-examining learning linear functions in context [1.8843687952462742]
In-context Learning (ICL) は大規模言語モデル(LLM)を様々なタスクに容易に適応するための強力なパラダイムとして登場した。
合成学習データを用いた制御設定でICLの簡単なモデルについて検討する。
本研究は,線形関数を文脈内で学習するためのアルゴリズム的アプローチをトランスフォーマーが採用する,一般的な物語に挑戦するものである。
論文 参考訳(メタデータ) (2024-11-18T10:58:46Z) - Provably Transformers Harness Multi-Concept Word Semantics for Efficient In-Context Learning [53.685764040547625]
トランスフォーマーベースの大規模言語モデル(LLM)は、卓越した創造力と出現能力を示している。
この研究は、トランスフォーマーが単語のマルチコンセプトセマンティクスをどのように活用し、強力なICLと優れたアウト・オブ・ディストリビューションICL能力を実現するかを示すための数学的解析を提供する。
論文 参考訳(メタデータ) (2024-11-04T15:54:32Z) - Interpreting Affine Recurrence Learning in GPT-style Transformers [54.01174470722201]
インコンテキスト学習により、GPTスタイルのトランスフォーマーは、重みを変更することなく推論中に一般化できる。
本稿では,ICLタスクとしてアフィンの再発を学習し,予測する能力に着目する。
実験的手法と理論的手法の両方を用いてモデルの内部動作を分析する。
論文 参考訳(メタデータ) (2024-10-22T21:30:01Z) - Interpreting token compositionality in LLMs: A robustness analysis [10.777646083061395]
Constituent-Aware Pooling (CAP)は、大規模言語モデルが言語構造をどのように処理するかを分析するために設計された方法論である。
CAPは様々なモデルレベルで構成型プールを通してモデル活性化に介入する。
本研究は,合成セマンティクス処理とモデル解釈可能性に関する,現在のトランスフォーマーアーキテクチャの基本的制約を明らかにする。
論文 参考訳(メタデータ) (2024-10-16T18:10:50Z) - In-Context Learning with Representations: Contextual Generalization of Trained Transformers [66.78052387054593]
In-context Learning (ICL) は、事前訓練された大規模言語モデルの能力を指し、推論中にいくつか例を挙げると、新しいタスクを学習できる。
本稿では,非線形回帰タスクのレンズによる勾配降下による変圧器のトレーニングダイナミクスについて検討する。
論文 参考訳(メタデータ) (2024-08-19T16:47:46Z) - Learning to grok: Emergence of in-context learning and skill composition in modular arithmetic tasks [5.358878931933351]
モジュール型算術タスクの集合における文脈内学習とスキル構成の出現について検討する。
具体的には、線型モジュラ函数の有限集合 $z = a, x + b, y ;mathrmmod; p$ を mathbbZ_p2$ のベクトル $(a, b) でラベル付けする。
論文 参考訳(メタデータ) (2024-06-04T17:59:36Z) - How Do Nonlinear Transformers Learn and Generalize in In-Context Learning? [82.51626700527837]
トランスフォーマーベースの大規模言語モデルでは、トレーニング済みのモデルが微調整なしで新しいタスクを処理できるような、コンテキスト内学習機能が印象的だった。
我々は、TransformerがICLを実現する方法の仕組みが、Transformerにおけるトレーニング問題の技術的課題にどのように貢献するかを分析する。
論文 参考訳(メタデータ) (2024-02-23T21:07:20Z) - Piecewise Polynomial Regression of Tame Functions via Integer Programming [2.2499166814992435]
我々は,tame関数,すべての共通活性化をもつ非平滑関数,混合整数プログラムの値関数,小分子の波動関数を考える。
論文 参考訳(メタデータ) (2023-11-22T17:37:42Z) - How Do Transformers Learn In-Context Beyond Simple Functions? A Case
Study on Learning with Representations [98.7450564309923]
本稿では、より複雑なシナリオにおける文脈内学習(ICL)の理解を、表現を用いた学習で研究する。
合成文内学習問題を合成構造を用いて構築し、ラベルは複雑なが固定された表現関数によって入力に依存する。
理論的には、そのようなアルゴリズムを軽度な深さと大きさでほぼ実装するトランスフォーマーの存在を示す。
論文 参考訳(メタデータ) (2023-10-16T17:40:49Z) - Understanding In-Context Learning in Transformers and LLMs by Learning
to Learn Discrete Functions [32.59746882017483]
本論文では,トランスフォーマーが一つのタスクを解くために2つの異なるアルゴリズムを実装することを学習できることを示す。
また,既存のLarge Language Models (LLMs) は,予測タスクにおいて最寄りのベースラインと競合することを示す。
論文 参考訳(メタデータ) (2023-10-04T17:57:33Z) - Transformers as Statisticians: Provable In-Context Learning with
In-Context Algorithm Selection [88.23337313766353]
この研究はまず、変換器がICLを実行するための包括的な統計理論を提供する。
コンテクストにおいて、トランスフォーマーは、幅広い種類の標準機械学習アルゴリズムを実装可能であることを示す。
エンフィングル変換器は、異なるベースICLアルゴリズムを適応的に選択することができる。
論文 参考訳(メタデータ) (2023-06-07T17:59:31Z) - What Can Transformers Learn In-Context? A Case Study of Simple Function
Classes [67.06980111346245]
インコンテキスト学習(In-context learning)とは、インコンテキストの例からなるプロンプトシーケンスでモデルに条件を付ける能力である。
我々は,標準変換器をスクラッチから訓練して,線形関数の文脈内学習を行うことを示した。
また、タスク固有の学習アルゴリズムに適合または超越したパフォーマンスで、より複雑な関数クラスをコンテキスト内で学習できるようにトランスフォーマーを訓練できることも示している。
論文 参考訳(メタデータ) (2022-08-01T18:01:40Z) - Bilinear Classes: A Structural Framework for Provable Generalization in
RL [119.42509700822484]
Bilinear Classesは強化学習の一般化を可能にする新しい構造フレームワークである。
このフレームワークは、サンプルの複雑さが達成可能な、ほとんどすべての既存のモデルを取り込んでいる。
我々の主な成果は、双線形クラスのためのサンプル複雑性を持つRLアルゴリズムである。
論文 参考訳(メタデータ) (2021-03-19T16:34:20Z) - Learning outside the Black-Box: The pursuit of interpretable models [78.32475359554395]
本稿では,任意の連続ブラックボックス関数の連続的大域的解釈を生成するアルゴリズムを提案する。
我々の解釈は、その芸術の以前の状態から飛躍的な進歩を表している。
論文 参考訳(メタデータ) (2020-11-17T12:39:44Z) - On Function Approximation in Reinforcement Learning: Optimism in the
Face of Large State Spaces [208.67848059021915]
強化学習のコアにおける探索・探索トレードオフについて検討する。
特に、関数クラス $mathcalF$ の複雑さが関数の複雑さを特徴づけていることを証明する。
私たちの後悔の限界はエピソードの数とは無関係です。
論文 参考訳(メタデータ) (2020-11-09T18:32:22Z) - From Sets to Multisets: Provable Variational Inference for Probabilistic
Integer Submodular Models [82.95892656532696]
サブモジュール関数は機械学習やデータマイニングにおいて広く研究されている。
本研究では,整数部分モジュラ函数に対する連続DR-部分モジュラ拡張を提案する。
整数部分モジュラー関数によって定義される新しい確率モデルを定式化する。
論文 参考訳(メタデータ) (2020-06-01T22:20:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。