Enhancing Free-hand 3D Photoacoustic and Ultrasound Reconstruction using Deep Learning
- URL: http://arxiv.org/abs/2502.03505v1
- Date: Wed, 05 Feb 2025 11:59:23 GMT
- Title: Enhancing Free-hand 3D Photoacoustic and Ultrasound Reconstruction using Deep Learning
- Authors: SiYeoul Lee, SeonHo Kim, Minkyung Seo, SeongKyu Park, Salehin Imrus, Kambaluru Ashok, DongEon Lee, Chunsu Park, SeonYeong Lee, Jiye Kim, Jae-Heung Yoo, MinWoo Kim,
- Abstract summary: This study introduces a motion-based learning network with a global-local self-attention module (MoGLo-Net) to enhance 3D reconstruction in handheld photoacoustic and ultrasound (PAUS) imaging.
MoGLo-Net exploits the critical regions, such as fully-developed speckle area or high-echogenic tissue area within successive ultrasound images to accurately estimate motion parameters.
- Score: 3.8426872518410997
- License:
- Abstract: This study introduces a motion-based learning network with a global-local self-attention module (MoGLo-Net) to enhance 3D reconstruction in handheld photoacoustic and ultrasound (PAUS) imaging. Standard PAUS imaging is often limited by a narrow field of view and the inability to effectively visualize complex 3D structures. The 3D freehand technique, which aligns sequential 2D images for 3D reconstruction, faces significant challenges in accurate motion estimation without relying on external positional sensors. MoGLo-Net addresses these limitations through an innovative adaptation of the self-attention mechanism, which effectively exploits the critical regions, such as fully-developed speckle area or high-echogenic tissue area within successive ultrasound images to accurately estimate motion parameters. This facilitates the extraction of intricate features from individual frames. Additionally, we designed a patch-wise correlation operation to generate a correlation volume that is highly correlated with the scanning motion. A custom loss function was also developed to ensure robust learning with minimized bias, leveraging the characteristics of the motion parameters. Experimental evaluations demonstrated that MoGLo-Net surpasses current state-of-the-art methods in both quantitative and qualitative performance metrics. Furthermore, we expanded the application of 3D reconstruction technology beyond simple B-mode ultrasound volumes to incorporate Doppler ultrasound and photoacoustic imaging, enabling 3D visualization of vasculature. The source code for this study is publicly available at: https://github.com/guhong3648/US3D
Related papers
- MRI Reconstruction with Regularized 3D Diffusion Model (R3DM) [2.842800539489865]
We propose a 3D MRI reconstruction method that leverages a regularized 3D diffusion model combined with optimization method.
By incorporating diffusion based priors, our method improves image quality, reduces noise, and enhances the overall fidelity of 3D MRI reconstructions.
arXiv Detail & Related papers (2024-12-25T00:55:05Z) - MedTet: An Online Motion Model for 4D Heart Reconstruction [59.74234226055964]
We present a novel approach to reconstruction of 3D cardiac motion from sparse intraoperative data.
Existing methods can accurately reconstruct 3D organ geometries from full 3D volumetric imaging.
We propose a versatile framework for reconstructing 3D motion from such partial data.
arXiv Detail & Related papers (2024-12-03T17:18:33Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - SLAM assisted 3D tracking system for laparoscopic surgery [22.36252790404779]
This work proposes a real-time monocular 3D tracking algorithm for post-registration tasks.
Experiments from in-vivo and ex-vivo tests demonstrate that the proposed 3D tracking system provides robust 3D tracking.
arXiv Detail & Related papers (2024-09-18T04:00:54Z) - NeRF-US: Removing Ultrasound Imaging Artifacts from Neural Radiance Fields in the Wild [11.047805165425256]
Current methods for performing 3D reconstruction and novel view synthesis (NVS) in ultrasound imaging data often face severe artifacts when training NeRF-based approaches.
In this work, we introduced NeRF-US, which incorporates 3D-geometry guidance for border probability and scattering density into NeRF training.
arXiv Detail & Related papers (2024-08-13T13:21:53Z) - UlRe-NeRF: 3D Ultrasound Imaging through Neural Rendering with Ultrasound Reflection Direction Parameterization [0.5837446811360741]
Traditional 3D ultrasound imaging methods have limitations such as fixed resolution, low storage efficiency, and insufficient contextual connectivity.
We propose a new model, UlRe-NeRF, which combines implicit neural networks and explicit ultrasound rendering architecture.
Experimental results demonstrate that the UlRe-NeRF model significantly enhances the realism and accuracy of high-fidelity ultrasound image reconstruction.
arXiv Detail & Related papers (2024-08-01T18:22:29Z) - MinD-3D: Reconstruct High-quality 3D objects in Human Brain [50.534007259536715]
Recon3DMind is an innovative task aimed at reconstructing 3D visuals from Functional Magnetic Resonance Imaging (fMRI) signals.
We present the fMRI-Shape dataset, which includes data from 14 participants and features 360-degree videos of 3D objects.
We propose MinD-3D, a novel and effective three-stage framework specifically designed to decode the brain's 3D visual information from fMRI signals.
arXiv Detail & Related papers (2023-12-12T18:21:36Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
Beamforming, the process of mapping received ultrasound echoes to the spatial image domain, lies at the heart of the ultrasound image formation chain.
Modern ultrasound imaging leans heavily on innovations in powerful digital receive channel processing.
Deep learning methods can play a compelling role in the digital beamforming pipeline.
arXiv Detail & Related papers (2021-09-23T15:15:21Z) - A Geometry-Informed Deep Learning Framework for Ultra-Sparse 3D
Tomographic Image Reconstruction [13.44786774177579]
We establish a geometry-informed deep learning framework for ultra-sparse 3D tomographic image reconstruction.
We demonstrate that the seamless inclusion of known priors is essential to enhance the performance of 3D volumetric computed tomography imaging.
arXiv Detail & Related papers (2021-05-25T06:20:03Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Tattoo tomography: Freehand 3D photoacoustic image reconstruction with
an optical pattern [49.240017254888336]
Photoacoustic tomography (PAT) is a novel imaging technique that can resolve both morphological and functional tissue properties.
A current drawback is the limited field-of-view provided by the conventionally applied 2D probes.
We present a novel approach to 3D reconstruction of PAT data that does not require an external tracking system.
arXiv Detail & Related papers (2020-11-10T09:27:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.