論文の概要: Clinically-Inspired Hierarchical Multi-Label Classification of Chest X-rays with a Penalty-Based Loss Function
- arxiv url: http://arxiv.org/abs/2502.03591v1
- Date: Wed, 05 Feb 2025 20:15:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:34:31.140457
- Title: Clinically-Inspired Hierarchical Multi-Label Classification of Chest X-rays with a Penalty-Based Loss Function
- Title(参考訳): 臨床応用による胸部X線の階層的マルチラベル分類 : ペナルティ型損失関数を用いた検討
- Authors: Mehrdad Asadi, Komi Sodoké, Ian J. Gerard, Marta Kersten-Oertel,
- Abstract要約: 本稿では,臨床診断性を高めるマルチラベル胸部X線(CXR)画像分類法を提案する。
臨床的に有意な診断関係を捉えるため,階層的なラベル分類を取り入れた。
実験では,受信機動作特性曲線(AUROC)の0.903の平均値を得た。
- 参考スコア(独自算出の注目度): 1.264536505250038
- License:
- Abstract: In this work, we present a novel approach to multi-label chest X-ray (CXR) image classification that enhances clinical interpretability while maintaining a streamlined, single-model, single-run training pipeline. Leveraging the CheXpert dataset and VisualCheXbert-derived labels, we incorporate hierarchical label groupings to capture clinically meaningful relationships between diagnoses. To achieve this, we designed a custom hierarchical binary cross-entropy (HBCE) loss function that enforces label dependencies using either fixed or data-driven penalty types. Our model achieved a mean area under the receiver operating characteristic curve (AUROC) of 0.903 on the test set. Additionally, we provide visual explanations and uncertainty estimations to further enhance model interpretability. All code, model configurations, and experiment details are made available.
- Abstract(参考訳): 本研究では,マルチラベル胸部X線(CXR)画像分類への新たなアプローチを提案する。
我々はCheXpertデータセットとVisualCheXbert由来のラベルを活用し、階層的なラベルグループを組み込んで、診断間の臨床的に有意な関係を捉える。
これを実現するために、固定型またはデータ駆動型ペナルティタイプを使用してラベル依存を強制する独自の階層的バイナリクロスエントロピー(HBCE)損失関数を設計した。
実験では,受信機動作特性曲線(AUROC)の0.903の平均値を得た。
さらに、モデル解釈可能性をさらに高めるために、視覚的説明と不確実性推定を提供する。
すべてのコード、モデル構成、実験の詳細が利用可能だ。
関連論文リスト
- How Can We Tame the Long-Tail of Chest X-ray Datasets? [0.0]
胸部X線(英: Chest X-rays、CXR)は、多数の異常を推測するために用いられる医療画像のモダリティである。
非常に一般的に観測されており、CXRデータセットで十分に表現されているものはほとんどない。
現在のモデルでは、稀ではあるが高い意味を持つラベルの独立した差別的特徴を学習することは困難である。
論文 参考訳(メタデータ) (2023-09-08T12:28:40Z) - How Does Pruning Impact Long-Tailed Multi-Label Medical Image
Classifiers? [49.35105290167996]
プルーニングは、ディープニューラルネットワークを圧縮し、全体的なパフォーマンスに大きな影響を及ぼすことなく、メモリ使用量と推論時間を短縮する強力なテクニックとして登場した。
この研究は、プルーニングがモデル行動に与える影響を理解するための第一歩である。
論文 参考訳(メタデータ) (2023-08-17T20:40:30Z) - Learning disentangled representations for explainable chest X-ray
classification using Dirichlet VAEs [68.73427163074015]
本研究では,胸部X線像の非絡み合った潜在表現の学習にDirVAE(Dirichlet Variational Autoencoder)を用いることを検討した。
DirVAEモデルにより学習された多モード潜在表現の予測能力について,補助的多ラベル分類タスクの実装により検討した。
論文 参考訳(メタデータ) (2023-02-06T18:10:08Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Severity Quantification and Lesion Localization of COVID-19 on CXR using
Vision Transformer [25.144248675578286]
世界的な新型コロナウイルス(covid-19)のパンデミックの中で、covid-19の重症度を定量化する自動化フレームワークの構築がますます重要になっている。
重症度と臨床応用可能な新型コロナウイルス関連病変の局在を定量化するための新しい視覚トランスフォーマを提案する。
我々のモデルは、弱い配列に基づくラベルから全確率マップを生成するために、弱教師付きで訓練されている。
論文 参考訳(メタデータ) (2021-03-12T03:17:19Z) - Deep Hiearchical Multi-Label Classification Applied to Chest X-Ray
Abnormality Taxonomies [26.841289081747036]
本稿では,CXR CADのためのHMLCアプローチを提案する。
まず, 条件付き確率を直接モデル化し, 条件付き確率で補修することが, 性能向上の鍵となることを示す。
我々は、HMLCが欠落したラベルや不完全なラベルを管理する効果的な手段であることを実証した。
論文 参考訳(メタデータ) (2020-09-11T18:50:23Z) - BS-Net: learning COVID-19 pneumonia severity on a large Chest X-Ray
dataset [6.5800499500032705]
我々は、Chest X-rays画像(CXR)に基づいて、新型コロナウイルス患者の肺妥協の度合いを判定するエンド・ツー・エンドのディープラーニングアーキテクチャを設計する。
当院で収集した約5,000個のCXR注釈画像の臨床的データセットを利用して検討した。
私たちのソリューションは、評価精度と一貫性において、一人のアノテータよりも優れています。
論文 参考訳(メタデータ) (2020-06-08T13:55:58Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
我々は、外部のCXRデータセットを組み込むことで、不完全なトレーニングデータにつながると論じ、課題を提起する。
本研究は,多ラベル病分類問題を重み付き独立二分課題として分類する。
我々のフレームワークは、ドメインとラベルの相違を同時にモデル化し、対処し、優れた知識マイニング能力を実現する。
論文 参考訳(メタデータ) (2020-06-06T06:48:40Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z) - Dynamic Graph Correlation Learning for Disease Diagnosis with Incomplete
Labels [66.57101219176275]
胸部X線画像上の疾患診断は,多ラベル分類の課題である。
本稿では,異なる疾患間の相互依存を調査する新たな視点を提示する病的診断グラフ畳み込みネットワーク(DD-GCN)を提案する。
本手法は,相関学習のための動的隣接行列を用いた特徴写像上のグラフを初めて構築する手法である。
論文 参考訳(メタデータ) (2020-02-26T17:10:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。