Solar Panel Mapping via Oriented Object Detection
- URL: http://arxiv.org/abs/2502.03592v1
- Date: Wed, 05 Feb 2025 20:19:37 GMT
- Title: Solar Panel Mapping via Oriented Object Detection
- Authors: Conor Wallace, Isaac Corley, Jonathan Lwowski,
- Abstract summary: We propose an end-to-end deep learning framework for detecting individual solar panels.
We evaluate our approach on a diverse dataset of solar power plants collected from across the United States.
- Score: 0.0
- License:
- Abstract: Maintaining the integrity of solar power plants is a vital component in dealing with the current climate crisis. This process begins with analysts creating a detailed map of a plant with the coordinates of every solar panel, making it possible to quickly locate and mitigate potential faulty solar panels. However, this task is extremely tedious and is not scalable for the ever increasing capacity of solar power across the globe. Therefore, we propose an end-to-end deep learning framework for detecting individual solar panels using a rotated object detection architecture. We evaluate our approach on a diverse dataset of solar power plants collected from across the United States and report a mAP score of 83.3%.
Related papers
- Satellite Sunroof: High-res Digital Surface Models and Roof Segmentation for Global Solar Mapping [1.9488614430966358]
Google's Solar API estimates solar potential from aerial imagery.
This paper proposes expanding the API's reach using satellite imagery.
Our models, trained on aligned satellite and aerial datasets, produce 25cm DSMs and roof segments.
arXiv Detail & Related papers (2024-08-26T16:34:13Z) - GloSoFarID: Global multispectral dataset for Solar Farm IDentification in satellite imagery [1.2021565114959365]
This study develops the first comprehensive global dataset of multispectral satellite imagery of solar panel farms.
It is intended to form the basis for training robust machine learning models, which can accurately map and analyze the expansion and distribution of solar panel farms globally.
arXiv Detail & Related papers (2024-04-08T04:10:50Z) - Towards Automatic Power Battery Detection: New Challenge, Benchmark
Dataset and Baseline [70.30473488226093]
We conduct a comprehensive study on a new task named power battery detection (PBD)
It aims to localize the dense cathode and anode plates endpoints from X-ray images to evaluate the quality of power batteries.
We propose a novel segmentation-based solution for PBD, termed multi-dimensional collaborative network (MDCNet)
arXiv Detail & Related papers (2023-12-05T06:18:38Z) - SolarFormer: Multi-scale Transformer for Solar PV Profiling [7.686020113962378]
SolarFormer is designed to segment solar panels from aerial imagery, offering insights into their location and size.
Our model leverages low-level features and incorporates an instance query mechanism to enhance the localization of solar PV installations.
Our experiments consistently demonstrate that our model either matches or surpasses state-of-the-art models.
arXiv Detail & Related papers (2023-10-30T22:22:01Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Data-driven soiling detection in PV modules [58.6906336996604]
We study the problem of estimating the soiling ratio in photo-voltaic (PV) modules.
A key advantage of our algorithms is that they estimate soiling, without needing to train on labelled data.
Our experimental evaluation shows that we significantly outperform current state-of-the-art methods for estimating soiling ratio.
arXiv Detail & Related papers (2023-01-30T14:35:47Z) - Computational Solar Energy -- Ensemble Learning Methods for Prediction
of Solar Power Generation based on Meteorological Parameters in Eastern India [0.0]
It is important to estimate the amount of solar photovoltaic (PV) power generation for a specific geographical location.
In this paper, the impact of weather parameters on solar PV power generation is estimated by several Ensemble ML (EML) models like Bagging, Boosting, Stacking, and Voting.
The results demonstrate greater prediction accuracy of around 96% for Stacking and Voting models.
arXiv Detail & Related papers (2023-01-21T19:16:03Z) - HyperionSolarNet: Solar Panel Detection from Aerial Images [0.7157957528875099]
We use deep learning methods for automated detection of solar panel locations and their surface area using aerial imagery.
Our work provides an efficient and scalable method for detecting solar panels, achieving an accuracy of 0.96 for classification and an IoU score of 0.82 for segmentation performance.
arXiv Detail & Related papers (2022-01-06T15:43:13Z) - A Multi-Stage model based on YOLOv3 for defect detection in PV panels
based on IR and Visible Imaging by Unmanned Aerial Vehicle [65.99880594435643]
We propose a novel model to detect panel defects on aerial images captured by unmanned aerial vehicle.
The model combines detections of panels and defects to refine its accuracy.
The proposed model has been validated on two big PV plants in the south of Italy.
arXiv Detail & Related papers (2021-11-23T08:04:32Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.