GloSoFarID: Global multispectral dataset for Solar Farm IDentification in satellite imagery
- URL: http://arxiv.org/abs/2404.05180v2
- Date: Mon, 26 Aug 2024 16:13:30 GMT
- Title: GloSoFarID: Global multispectral dataset for Solar Farm IDentification in satellite imagery
- Authors: Zhiyuan Yang, Ryan Rad,
- Abstract summary: This study develops the first comprehensive global dataset of multispectral satellite imagery of solar panel farms.
It is intended to form the basis for training robust machine learning models, which can accurately map and analyze the expansion and distribution of solar panel farms globally.
- Score: 1.2021565114959365
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solar Photovoltaic (PV) technology is increasingly recognized as a pivotal solution in the global pursuit of clean and renewable energy. This technology addresses the urgent need for sustainable energy alternatives by converting solar power into electricity without greenhouse gas emissions. It not only curtails global carbon emissions but also reduces reliance on finite, non-renewable energy sources. In this context, monitoring solar panel farms becomes essential for understanding and facilitating the worldwide shift toward clean energy. This study contributes to this effort by developing the first comprehensive global dataset of multispectral satellite imagery of solar panel farms. This dataset is intended to form the basis for training robust machine learning models, which can accurately map and analyze the expansion and distribution of solar panel farms globally. The insights gained from this endeavor will be instrumental in guiding informed decision-making for a sustainable energy future. https://github.com/yzyly1992/GloSoFarID
Related papers
- SolarFormer: Multi-scale Transformer for Solar PV Profiling [7.686020113962378]
SolarFormer is designed to segment solar panels from aerial imagery, offering insights into their location and size.
Our model leverages low-level features and incorporates an instance query mechanism to enhance the localization of solar PV installations.
Our experiments consistently demonstrate that our model either matches or surpasses state-of-the-art models.
arXiv Detail & Related papers (2023-10-30T22:22:01Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - Blockchain-enabled Parametric Solar Energy Insurance via Remote Sensing [1.76179873429447]
Parametric solar energy insurance offers opportunities of financial subsidies for insufficient solar energy generation.
We utilize the state-of-the-art succinct zero-knowledge proofs (zk-SNARK) to realize privacy-preserving blockchain-based solar energy insurance platform.
arXiv Detail & Related papers (2023-05-17T05:41:35Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
Machine learning (ML) requires using energy to carry out computations during the model training process.
The generation of this energy comes with an environmental cost in terms of greenhouse gas emissions, depending on quantity used and the energy source.
We present a survey of the carbon emissions of 95 ML models across time and different tasks in natural language processing and computer vision.
arXiv Detail & Related papers (2023-02-16T18:35:00Z) - Data-driven soiling detection in PV modules [58.6906336996604]
We study the problem of estimating the soiling ratio in photo-voltaic (PV) modules.
A key advantage of our algorithms is that they estimate soiling, without needing to train on labelled data.
Our experimental evaluation shows that we significantly outperform current state-of-the-art methods for estimating soiling ratio.
arXiv Detail & Related papers (2023-01-30T14:35:47Z) - Location-aware green energy availability forecasting for multiple time
frames in smart buildings: The case of Estonia [0.5156484100374058]
This research aims to forecast PV system output power based on weather and derived features using different machine learning models.
The objective is to obtain the best-fitting model to precisely predict output power by inspecting the data.
arXiv Detail & Related papers (2022-10-04T14:02:43Z) - An Artificial Intelligence Dataset for Solar Energy Locations in India [6.454602468926006]
India has set ambitious goals to install 300 gigawatts of solar energy capacity by 2030.
Land use planners will need access to up-to-date and accurate geo-spatial information of PV infrastructure.
We develop a spatially explicit machine learning model to map utility-scale solar projects across India.
arXiv Detail & Related papers (2022-01-31T23:53:19Z) - HyperionSolarNet: Solar Panel Detection from Aerial Images [0.7157957528875099]
We use deep learning methods for automated detection of solar panel locations and their surface area using aerial imagery.
Our work provides an efficient and scalable method for detecting solar panels, achieving an accuracy of 0.96 for classification and an IoU score of 0.82 for segmentation performance.
arXiv Detail & Related papers (2022-01-06T15:43:13Z) - Modelling the transition to a low-carbon energy supply [91.3755431537592]
A transition to a low-carbon electricity supply is crucial to limit the impacts of climate change.
Reducing carbon emissions could help prevent the world from reaching a tipping point, where runaway emissions are likely.
Runaway emissions could lead to extremes in weather conditions around the world.
arXiv Detail & Related papers (2021-09-25T12:37:05Z) - Towards a Peer-to-Peer Energy Market: an Overview [68.8204255655161]
This work focuses on the electric power market, comparing the status quo with the recent trend towards the increase in distributed self-generation capabilities by prosumers.
We introduce a potential multi-layered architecture for a Peer-to-Peer (P2P) energy market, discussing the fundamental aspects of local production and local consumption as part of a microgrid.
To give a full picture to the reader, we also scrutinise relevant elements of energy trading, such as Smart Contract and grid stability.
arXiv Detail & Related papers (2020-03-02T20:32:10Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
We introduce a framework for tracking realtime energy consumption and carbon emissions.
We create a leaderboard for energy efficient reinforcement learning algorithms.
We propose strategies for mitigation of carbon emissions and reduction of energy consumption.
arXiv Detail & Related papers (2020-01-31T05:12:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.