論文の概要: Contrastive Learning for Cold Start Recommendation with Adaptive Feature Fusion
- arxiv url: http://arxiv.org/abs/2502.03664v1
- Date: Wed, 05 Feb 2025 23:15:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:33:12.184925
- Title: Contrastive Learning for Cold Start Recommendation with Adaptive Feature Fusion
- Title(参考訳): 適応的特徴融合による冷間開始勧告のコントラスト学習
- Authors: Jiacheng Hu, Tai An, Zidong Yu, Junliang Du, Yuanshuai Luo,
- Abstract要約: 本稿では,コントラスト学習を統合したコールドスタートレコメンデーションモデルを提案する。
このモデルは適応的特徴選択モジュールを通じて鍵特徴の重みを動的に調整する。
マルチモーダルな特徴融合機構を組み合わせることで、ユーザ属性、アイテムメタ情報、コンテキスト特徴を統合する。
- 参考スコア(独自算出の注目度): 2.2194815687410627
- License:
- Abstract: This paper proposes a cold start recommendation model that integrates contrastive learning, aiming to solve the problem of performance degradation of recommendation systems in cold start scenarios due to the scarcity of user and item interaction data. The model dynamically adjusts the weights of key features through an adaptive feature selection module and effectively integrates user attributes, item meta-information, and contextual features by combining a multimodal feature fusion mechanism, thereby improving recommendation performance. In addition, the model introduces a contrastive learning mechanism to enhance the robustness and generalization ability of feature representation by constructing positive and negative sample pairs. Experiments are conducted on the MovieLens-1M dataset. The results show that the proposed model significantly outperforms mainstream recommendation methods such as Matrix Factorization, LightGBM, DeepFM, and AutoRec in terms of HR, NDCG, MRR, and Recall, especially in cold start scenarios. Ablation experiments further verify the key role of each module in improving model performance, and the learning rate sensitivity analysis shows that a moderate learning rate is crucial to the optimization effect of the model. This study not only provides a new solution to the cold start problem but also provides an important reference for the application of contrastive learning in recommendation systems. In the future, this model is expected to play a role in a wider range of scenarios, such as real-time recommendation and cross-domain recommendation.
- Abstract(参考訳): 本稿では,ユーザとアイテムのインタラクションデータ不足によるコールドスタートシナリオにおけるレコメンデーションシステムの性能劣化の問題を解決することを目的とした,コントラスト学習を統合したコールドスタートレコメンデーションモデルを提案する。
このモデルは、適応的特徴選択モジュールを介して重要な特徴の重みを動的に調整し、マルチモーダルな特徴融合機構を組み合わせることにより、ユーザ属性、アイテムメタ情報、コンテキスト特徴を効果的に統合し、レコメンデーション性能を向上させる。
さらに、正と負のサンプルペアを構築することで特徴表現の頑健性と一般化能力を高めるための対照的な学習機構を導入する。
MovieLens-1Mデータセット上で実験を行う。
提案手法は,特にコールドスタートシナリオにおいて,HR,NDCG,MRR,リコールにおいて,行列因子化,LightGBM,DeepFM,AutoRecといった主流の推奨手法よりも優れていた。
アブレーション実験により,各モジュールのモデル性能向上における重要な役割が検証され,学習速度感度解析により,モデルの最適化効果に適度な学習速度が重要であることが示された。
本研究はコールドスタート問題に対する新たな解決策を提供するだけでなく,レコメンデーションシステムにおけるコントラスト学習の適用にも重要な参考となる。
将来的には、リアルタイムレコメンデーションやクロスドメインレコメンデーションなど、幅広いシナリオにおいて、このモデルが役割を果たすことが期待される。
関連論文リスト
- Feasible Learning [78.6167929413604]
本稿では,サンプル中心の学習パラダイムであるFeasible Learning(FL)を紹介する。
大規模言語モデルにおける画像分類, 年齢回帰, 好みの最適化といった経験的分析により, FLを用いて訓練したモデルでは, 平均的性能に限界があるものの, ERMと比較して改善された尾の挙動を示しながらデータから学習できることが実証された。
論文 参考訳(メタデータ) (2025-01-24T20:39:38Z) - "FRAME: Forward Recursive Adaptive Model Extraction -- A Technique for Advance Feature Selection" [0.0]
本研究では,新しいハイブリッド手法であるフォワード再帰適応モデル抽出手法(FRAME)を提案する。
FRAMEは、フォワード選択と再帰的特徴除去を組み合わせて、さまざまなデータセットにおける機能選択を強化する。
その結果、FRAMEは下流の機械学習評価指標に基づいて、常に優れた予測性能を提供することが示された。
論文 参考訳(メタデータ) (2025-01-21T08:34:10Z) - Can foundation models actively gather information in interactive environments to test hypotheses? [56.651636971591536]
隠れた報酬関数に影響を与える要因をモデルが決定しなければならない枠組みを導入する。
自己スループットや推論時間の増加といったアプローチが情報収集効率を向上させるかどうかを検討する。
論文 参考訳(メタデータ) (2024-12-09T12:27:21Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - WSLRec: Weakly Supervised Learning for Neural Sequential Recommendation
Models [24.455665093145818]
我々は、WSLRecと呼ばれる新しいモデルに依存しないトレーニング手法を提案し、3段階のフレームワーク(事前学習、トップ$k$マイニング、本質的、微調整)を採用する。
WSLRec は、BR や ItemCF のようなモデルフリーメソッドから、余分な弱い監督のモデルを事前訓練することで、不完全性の問題を解決すると同時に、最上位の$k のマイニングを活用して、微調整のための弱い監督の信頼性の高いユーザ・イテム関連を検査することで、不正確な問題を解消する。
論文 参考訳(メタデータ) (2022-02-28T08:55:12Z) - Learning to Learn a Cold-start Sequential Recommender [70.5692886883067]
コールドスタート勧告は、現代のオンラインアプリケーションにおいて緊急の問題である。
メタ学習に基づくコールドスタートシーケンシャルレコメンデーションフレームワークMetaCSRを提案する。
MetaCSRは、通常のユーザの行動から共通のパターンを学ぶ能力を持っている。
論文 参考訳(メタデータ) (2021-10-18T08:11:24Z) - Top-N Recommendation with Counterfactual User Preference Simulation [26.597102553608348]
ユーザーランキングに基づく好みの学習を目的としたTop-Nレコメンデーションは、長い間、広範囲のアプリケーションにおいて基本的な問題だった。
本稿では,データ不足問題に対処するため,因果推論フレームワーク内での推薦タスクの再構築を提案する。
論文 参考訳(メタデータ) (2021-09-02T14:28:46Z) - Explainable Recommendation Systems by Generalized Additive Models with
Manifest and Latent Interactions [3.022014732234611]
本稿では,表現的および潜在的相互作用を持つ一般化加法モデルに基づく説明可能なレコメンデーションシステムを提案する。
効率的なモデルトレーニングと結果の視覚化のための新しいPythonパッケージGAMMLIが開発されました。
論文 参考訳(メタデータ) (2020-12-15T10:29:12Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
本稿では,シーケンスレコメンデーションのための自己改善学習のためのモデルS3-Recを提案する。
そこで本稿では,属性,項目,サブシーケンス,シーケンス間の相関関係を学習するために,4つの補助的自己教師対象を考案する。
6つの実世界のデータセットで実施された大規模な実験は、既存の最先端手法よりも提案手法が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-18T11:44:10Z) - Self-Supervised Reinforcement Learning for Recommender Systems [77.38665506495553]
逐次リコメンデーションタスクのための自己指導型強化学習を提案する。
提案手法は,2つの出力層を持つ標準レコメンデーションモデルを強化する。
このようなアプローチに基づいて、自己監督型Q-ラーニング(SQN)と自己監督型アクター・クライブ(SAC)という2つのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-10T11:18:57Z) - MM-KTD: Multiple Model Kalman Temporal Differences for Reinforcement
Learning [36.14516028564416]
本稿では、最適制御ポリシーを学習するための革新的マルチモデルカルマン時間差分(MM-KTD)フレームワークを提案する。
システムのサンプリング効率を高めるために,能動的学習法を提案する。
実験の結果, MM-KTDフレームワークは最先端のフレームワークに比べて優れていた。
論文 参考訳(メタデータ) (2020-05-30T06:39:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。