Following Devils' Footprint: Towards Real-time Detection of Price Manipulation Attacks
- URL: http://arxiv.org/abs/2502.03718v1
- Date: Thu, 06 Feb 2025 02:11:24 GMT
- Title: Following Devils' Footprint: Towards Real-time Detection of Price Manipulation Attacks
- Authors: Bosi Zhang, Ningyu He, Xiaohui Hu, Kai Ma, Haoyu Wang,
- Abstract summary: Price manipulation attacks are one of the notorious threats in decentralized finance (DeFi) applications.
We propose SMARTCAT, a novel approach for identifying price manipulation attacks in the pre-attack stage proactively.
We show that SMARTCAT significantly outperforms existing baselines with 91.6% recall and 100% precision.
- Score: 10.782846331348379
- License:
- Abstract: Price manipulation attack is one of the notorious threats in decentralized finance (DeFi) applications, which allows attackers to exchange tokens at an extensively deviated price from the market. Existing efforts usually rely on reactive methods to identify such kind of attacks after they have happened, e.g., detecting attack transactions in the post-attack stage, which cannot mitigate or prevent price manipulation attacks timely. From the perspective of attackers, they usually need to deploy attack contracts in the pre-attack stage. Thus, if we can identify these attack contracts in a proactive manner, we can raise alarms and mitigate the threats. With the core idea in mind, in this work, we shift our attention from the victims to the attackers. Specifically, we propose SMARTCAT, a novel approach for identifying price manipulation attacks in the pre-attack stage proactively. For generality, it conducts analysis on bytecode and does not require any source code and transaction data. For accuracy, it depicts the control- and data-flow dependency relationships among function calls into a token flow graph. For scalability, it filters out those suspicious paths, in which it conducts inter-contract analysis as necessary. To this end, SMARTCAT can pinpoint attacks in real time once they have been deployed on a chain. The evaluation results illustrate that SMARTCAT significantly outperforms existing baselines with 91.6% recall and ~100% precision. Moreover, SMARTCAT also uncovers 616 attack contracts in-the-wild, accounting for \$9.25M financial losses, with only 19 cases publicly reported. By applying SMARTCAT as a real-time detector in Ethereum and Binance Smart Chain, it has raised 14 alarms 99 seconds after the corresponding deployment on average. These attacks have already led to $641K financial losses, and seven of them are still waiting for their ripe time.
Related papers
- AdvQDet: Detecting Query-Based Adversarial Attacks with Adversarial Contrastive Prompt Tuning [93.77763753231338]
Adversarial Contrastive Prompt Tuning (ACPT) is proposed to fine-tune the CLIP image encoder to extract similar embeddings for any two intermediate adversarial queries.
We show that ACPT can detect 7 state-of-the-art query-based attacks with $>99%$ detection rate within 5 shots.
We also show that ACPT is robust to 3 types of adaptive attacks.
arXiv Detail & Related papers (2024-08-04T09:53:50Z) - GasTrace: Detecting Sandwich Attack Malicious Accounts in Ethereum [0.7529855084362796]
We propose a cascade classification framework GasTrace to identify and prevent sandwich attacks.
GasTrace performs an accuracy of 96.73% and an F1 score of 95.71% for identifying sandwich attack accounts.
arXiv Detail & Related papers (2024-05-30T11:55:21Z) - SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
Modern NLP models are often trained on public datasets drawn from diverse sources.
Data poisoning attacks can manipulate the model's behavior in ways engineered by the attacker.
Several strategies have been proposed to mitigate the risks associated with backdoor attacks.
arXiv Detail & Related papers (2024-05-19T14:50:09Z) - Uncover the Premeditated Attacks: Detecting Exploitable Reentrancy Vulnerabilities by Identifying Attacker Contracts [27.242299425486273]
Reentrancy, a notorious vulnerability in smart contracts, has led to millions of dollars in financial loss.
Current smart contract vulnerability detection tools suffer from a high false positive rate in identifying contracts with reentrancy vulnerabilities.
We propose BlockWatchdog, a tool that focuses on detecting reentrancy vulnerabilities by identifying attacker contracts.
arXiv Detail & Related papers (2024-03-28T03:07:23Z) - LookAhead: Preventing DeFi Attacks via Unveiling Adversarial Contracts [15.071155232677643]
Decentralized Finance (DeFi) incidents have resulted in financial damages exceeding 3 billion US dollars.
Current detection tools face significant challenges in identifying attack activities effectively.
We propose a new direction for detecting DeFi attacks that focuses on identifying adversarial contracts.
arXiv Detail & Related papers (2024-01-14T11:39:33Z) - FRAD: Front-Running Attacks Detection on Ethereum using Ternary
Classification Model [3.929929061618338]
Front-running attacks, a unique form of security threat, pose significant challenges to the integrity of blockchain transactions.
In these attack scenarios, malicious actors monitor other users' transaction activities, then strategically submit their own transactions with higher fees.
We introduce a novel detection method named FRAD (Front-Running Attacks Detection on using Ternary Classification Model)
Our experimental validation reveals that the Multilayer Perceptron (MLP) classifier offers the best performance in detecting front-running attacks, achieving an impressive accuracy rate of 84.59% and F1-score of 84.60%.
arXiv Detail & Related papers (2023-11-24T14:42:29Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
We introduce epsilon-illusory, a novel form of adversarial attack on sequential decision-makers.
Compared to existing attacks, we empirically find epsilon-illusory to be significantly harder to detect with automated methods.
Our findings suggest the need for better anomaly detectors, as well as effective hardware- and system-level defenses.
arXiv Detail & Related papers (2022-07-20T19:49:09Z) - FIRST: FrontrunnIng Resilient Smart ConTracts [3.5061201620029876]
In some cases, the inherently transparent and unregulated nature of cryptocurrencies leads to verifiable attacks on users of these applications.
One such attack is frontrunning, where a malicious entity leverages the knowledge of currently unprocessed financial transactions.
We propose FIRST, a framework that prevents frontrunning attacks and is built using cryptographic protocols.
arXiv Detail & Related papers (2022-04-02T23:30:13Z) - Zero-Query Transfer Attacks on Context-Aware Object Detectors [95.18656036716972]
Adversarial attacks perturb images such that a deep neural network produces incorrect classification results.
A promising approach to defend against adversarial attacks on natural multi-object scenes is to impose a context-consistency check.
We present the first approach for generating context-consistent adversarial attacks that can evade the context-consistency check.
arXiv Detail & Related papers (2022-03-29T04:33:06Z) - Composite Adversarial Attacks [57.293211764569996]
Adversarial attack is a technique for deceiving Machine Learning (ML) models.
In this paper, a new procedure called Composite Adrial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms.
CAA beats 10 top attackers on 11 diverse defenses with less elapsed time.
arXiv Detail & Related papers (2020-12-10T03:21:16Z) - RayS: A Ray Searching Method for Hard-label Adversarial Attack [99.72117609513589]
We present the Ray Searching attack (RayS), which greatly improves the hard-label attack effectiveness as well as efficiency.
RayS attack can also be used as a sanity check for possible "falsely robust" models.
arXiv Detail & Related papers (2020-06-23T07:01:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.