論文の概要: Multiple Invertible and Partial-Equivariant Function for Latent Vector Transformation to Enhance Disentanglement in VAEs
- arxiv url: http://arxiv.org/abs/2502.03740v1
- Date: Thu, 06 Feb 2025 03:08:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:33:48.645482
- Title: Multiple Invertible and Partial-Equivariant Function for Latent Vector Transformation to Enhance Disentanglement in VAEs
- Title(参考訳): VAEにおける非可逆・部分等変関数による遅延ベクトル変換とアンタングル化の促進
- Authors: Hee-Jun Jung, Jaehyoung Jeong, Kangil Kim,
- Abstract要約: 帰納的バイアスを注入するために,Multiple Invertible and partial-equivariant transformation (MIPE-transformation) と呼ばれる新しい手法を提案する。
3Dカー、3D形状、dSpritesデータセットの実験では、MIPE変換は最先端のVAEのアンタングル性能を改善する。
- 参考スコア(独自算出の注目度): 2.048226951354646
- License:
- Abstract: Disentanglement learning is a core issue for understanding and re-using trained information in Variational AutoEncoder (VAE), and effective inductive bias has been reported as a key factor. However, the actual implementation of such bias is still vague. In this paper, we propose a novel method, called Multiple Invertible and partial-equivariant transformation (MIPE-transformation), to inject inductive bias by 1) guaranteeing the invertibility of latent-to-latent vector transformation while preserving a certain portion of equivariance of input-to-latent vector transformation, called Invertible and partial-equivariant transformation (IPE-transformation), 2) extending the form of prior and posterior in VAE frameworks to an unrestricted form through a learnable conversion to an approximated exponential family, called Exponential Family conversion (EF-conversion), and 3) integrating multiple units of IPE-transformation and EF-conversion, and their training. In experiments on 3D Cars, 3D Shapes, and dSprites datasets, MIPE-transformation improves the disentanglement performance of state-of-the-art VAEs.
- Abstract(参考訳): 分散学習は、変分オートエンコーダ(VAE)における訓練された情報の理解と再利用に欠かせない問題であり、効果的な帰納バイアスが重要な要因として報告されている。
しかし、そのようなバイアスの実際の実装はいまだ曖昧である。
本稿では、帰納バイアスを注入するMIPE変換(Multiple Invertible and partial-equivariant transformation)と呼ばれる新しい手法を提案する。
1) Invertible and partial-evariant transformation(IPE-transformation)という,入力からレイテンシへのベクトル変換の等価性の一定部分を保ちながら,潜時からレイテンシへのベクトル変換の可逆性を保証する。
2 VAEフレームワークの前後の形式を学習可能な指数族への変換により非制限形式に拡張し、指数族変換(EF変換)という。
3) IPE変換とEF変換の複数のユニットの統合とその訓練。
3Dカー、3D形状、dSpritesデータセットの実験では、MIPE変換は最先端のVAEのアンタングル性能を改善する。
関連論文リスト
- Self-supervised Transformation Learning for Equivariant Representations [26.207358743969277]
教師なし表現学習は、様々な機械学習タスクを大幅に進歩させた。
本稿では,変換ラベルを画像ペアから派生した変換表現に置き換える自己教師あり変換学習(STL)を提案する。
さまざまな分類タスクと検出タスクにまたがって、アプローチの有効性を実証し、11のベンチマークのうち7つで既存の手法より優れています。
論文 参考訳(メタデータ) (2025-01-15T10:54:21Z) - Unsupervised Representation Learning from Sparse Transformation Analysis [79.94858534887801]
本稿では,潜在変数のスパース成分への変換を分解し,シーケンスデータから表現を学習することを提案する。
入力データは、まず潜伏活性化の分布として符号化され、その後確率フローモデルを用いて変換される。
論文 参考訳(メタデータ) (2024-10-07T23:53:25Z) - Equivariant Spatio-Temporal Self-Supervision for LiDAR Object Detection [37.142470149311904]
本研究では,空間的および時間的拡張を両立させることにより,時間的同変学習の枠組みを提案する。
既存の等変および不変のアプローチを多くの設定で上回る3次元物体検出のための事前学習法を示す。
論文 参考訳(メタデータ) (2024-04-17T20:41:49Z) - Recurrence Boosts Diversity! Revisiting Recurrent Latent Variable in
Transformer-Based Variational AutoEncoder for Diverse Text Generation [85.5379146125199]
変分自動エンコーダ(VAE)はテキスト生成において広く採用されている。
本稿ではトランスフォーマーをベースとしたリカレントVAE構造であるTRACEを提案する。
論文 参考訳(メタデータ) (2022-10-22T10:25:35Z) - Learning Symmetric Embeddings for Equivariant World Models [9.781637768189158]
入力空間(例えば画像)を符号化する学習対称埋め込みネットワーク(SEN)を提案する。
このネットワークは、同変のタスクネットワークでエンドツーエンドにトレーニングして、明示的に対称な表現を学ぶことができる。
実験により、SENは複素対称性表現を持つデータへの同変ネットワークの適用を促進することを示した。
論文 参考訳(メタデータ) (2022-04-24T22:31:52Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
変換によるクラス内分散に関する事前知識を活用することは、ディープニューラルネットワークのサンプル複雑性を改善するための強力な方法である。
そこで本研究では,アプリケーションの複雑な問題に対処するために,プルーニング法に基づく新しい単項選択アルゴリズムを提案する。
本稿では,Rotated-MNIST,SVHN,CIFAR-10データセットにおけるサンプルの複雑さの改善について述べる。
論文 参考訳(メタデータ) (2022-02-08T16:16:11Z) - Deformation Robust Roto-Scale-Translation Equivariant CNNs [10.44236628142169]
グループ同変畳み込みニューラルネットワーク(G-CNN)は,固有対称性を持つ一般化性能を著しく向上させる。
G-CNNの一般的な理論と実践的実装は、回転またはスケーリング変換の下での平面画像に対して研究されている。
論文 参考訳(メタデータ) (2021-11-22T03:58:24Z) - Equivariant Deep Dynamical Model for Motion Prediction [0.0]
深層生成モデリングは、データの最も単純化され圧縮された基礎的な記述を見つけるための動的モデリングの強力なアプローチである。
ほとんどの学習タスクは固有の対称性を持ち、すなわち入力変換は出力をそのままにするか、出力が同様の変換を行う。
本稿では, 入力空間の構造的表現を, 対称性の変換とともに変化するという意味で学習する動き予測のためのSO(3)同変深部力学モデル(EqDDM)を提案する。
論文 参考訳(メタデータ) (2021-11-02T21:01:43Z) - Bayesian Transformer Language Models for Speech Recognition [59.235405107295655]
トランスフォーマーで表現される最先端のニューラルネットワークモデル(LM)は非常に複雑である。
本稿では,トランスフォーマーLM推定のためのベイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-09T10:55:27Z) - SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows [78.77808270452974]
SurVAE Flowsは、VAEと正規化フローを含む構成可能な変換のためのモジュラーフレームワークである。
提案手法は,SurVAE フローとして表現できることが示唆された。
論文 参考訳(メタデータ) (2020-07-06T13:13:22Z) - Variational Transformers for Diverse Response Generation [71.53159402053392]
変分変換器(VT)は、変分自己注意フィードフォワードシーケンスモデルである。
VTはトランスフォーマーの並列化性と大域的受容場計算とCVAEの変動特性を組み合わせる。
本稿では,1)大域潜伏変数を用いた談話レベルの多様性のモデル化,2)細粒潜伏変数の列によるトランスフォーマーデコーダの拡張,の2種類のVTについて検討する。
論文 参考訳(メタデータ) (2020-03-28T07:48:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。