論文の概要: A Retrospective Systematic Study on Hierarchical Sparse Query Transformer-assisted Ultrasound Screening for Early Hepatocellular Carcinoma
- arxiv url: http://arxiv.org/abs/2502.03772v2
- Date: Thu, 20 Mar 2025 06:38:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 15:30:51.966952
- Title: A Retrospective Systematic Study on Hierarchical Sparse Query Transformer-assisted Ultrasound Screening for Early Hepatocellular Carcinoma
- Title(参考訳): 早期肝細胞癌に対する階層型スパースクエリー支援超音波スクリーニング法の検討
- Authors: Chaoyin She, Ruifang Lu, Danni He, Jiayi Lv, Yadan Lin, Meiqing Cheng, Hui Huang, Fengyu Ye, Lida Chen, Wei Wang, Qinghua Huang,
- Abstract要約: HCCは世界で3番目に多いがん関連死亡原因である。
AI技術の最近の進歩は、このギャップを埋めるための有望なソリューションを提供する。
HSQformerは、CNNのローカル特徴抽出とVision Transformerのグローバルコンテキスト認識を相乗化する、新しいハイブリッドアーキテクチャである。
- 参考スコア(独自算出の注目度): 10.226976909997711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hepatocellular carcinoma (HCC), ranking as the third leading cause of cancer-related mortality worldwide, demands urgent improvements in early detection to enhance patient survival. While ultrasound remains the preferred screening modality due to its cost-effectiveness and real-time capabilities, its sensitivity (59%-78%) heavily relies on radiologists' expertise, leading to inconsistent diagnostic outcomes and operational inefficiencies. Recent advancements in AI technology offer promising solutions to bridge this gap. This study introduces the Hierarchical Sparse Query Transformer (HSQformer), a novel hybrid architecture that synergizes CNNs' local feature extraction with Vision Transformers' global contextual awareness through latent space representation and sparse learning. By dynamically activating task-specific experts via a Mixture-of-Experts (MoE) framework, HSQformer achieves hierarchical feature integration without structural redundancy. Evaluated across three clinical scenarios: single-center, multi-center, and high-risk patient cohorts, HSQformer outperforms state-of-the-art models (e.g., 95.38% AUC in multi-center testing) and matches senior radiologists' diagnostic accuracy while significantly surpassing junior counterparts. These results highlight the potential of AI-assisted tools to standardize HCC screening, reduce dependency on human expertise, and improve early diagnosis rates. The full code is available at https://github.com/Asunatan/HSQformer.
- Abstract(参考訳): 肝細胞癌(HCC)は、世界中のがん関連死亡の3番目に多い原因であり、早期発見の急激な改善と患者の生存率の向上を要求している。
超音波は費用効率とリアルタイムの能力のためにスクリーニングのモダリティとして好まれるが、感度(59%-78%)は放射線技師の専門知識に大きく依存しており、矛盾する診断結果と手術の非効率性をもたらす。
AI技術の最近の進歩は、このギャップを埋めるための有望なソリューションを提供する。
本研究では, 階層型スパースクエリ変換器 (HSQformer) を導入し, CNNの局所的特徴抽出と視覚変換器のグローバルな文脈認識を, 潜時空間表現とスパース学習を通じて同期させるハイブリッドアーキテクチャを提案する。
タスク固有の専門家をMixture-of-Experts (MoE)フレームワークで動的に活性化することにより、HSQformerは構造的冗長性なしに階層的な機能統合を実現する。
シングルセンター、マルチセンター、ハイリスクの患者コホートの3つの臨床シナリオで評価され、HSQformerは最先端のモデル(例えば、マルチセンターテストでは95.38% AUC)より優れており、上級放射線技師の診断精度に匹敵し、下位のモデルを大きく上回っている。
これらの結果は、HCCスクリーニングを標準化し、人間の専門知識への依存を減らし、早期診断率を改善するAI支援ツールの可能性を強調している。
完全なコードはhttps://github.com/Asunatan/HSQformer.comで入手できる。
関連論文リスト
- Hybrid CNN with Chebyshev Polynomial Expansion for Medical Image Analysis [0.0]
肺がんは、世界中でがん関連死亡の原因の1つとなっている。
従来の畳み込みニューラルネットワーク(CNN)は、医療画像解析においてかなりの可能性を秘めている。
本研究では,Chebyshev-CNNを組み込んだハイブリッドディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-04-09T12:02:56Z) - An Integrated AI-Enabled System Using One Class Twin Cross Learning (OCT-X) for Early Gastric Cancer Detection [13.609580790532842]
胃癌の早期発見は、現在の診断技術の限界によって妨げられている。
本稿では,高速化のバランスをとるため,高度なハードウェアとソフトウェア技術を統合した統合システムを提案する。
論文 参考訳(メタデータ) (2025-03-31T06:37:17Z) - Interactive Gadolinium-Free MRI Synthesis: A Transformer with Localization Prompt Learning [6.716077690014641]
本研究では,非コントラストMR画像からCE-MRIを合成するトランスフォーマとローカライゼーション・プロンプツのフレームワークを提案する。
本アーキテクチャでは,マルチスケール機能を処理するために効率的なトランスフォーマーを使用する階層的バックボーン,空間的注意操作と相互注意機構を通じて相互補完情報を階層的に統合する多段階融合システム,という3つの重要なイノベーションを導入している。
このフレームワークは、放射線科医が推論中に診断プロンプトを入力し、人工知能と医療の専門知識を相乗化することによって、インタラクティブな臨床統合を可能にする。
論文 参考訳(メタデータ) (2025-03-03T07:44:28Z) - GS-TransUNet: Integrated 2D Gaussian Splatting and Transformer UNet for Accurate Skin Lesion Analysis [44.99833362998488]
本稿では,2次元ガウススプラッティングとTransformer UNetアーキテクチャを組み合わせた皮膚癌自動診断手法を提案する。
セグメンテーションと分類の精度は著しく向上した。
この統合は、新しいベンチマークをこの分野に設定し、マルチタスク医療画像解析手法のさらなる研究の可能性を強調している。
論文 参考訳(メタデータ) (2025-02-23T23:28:47Z) - ProjectedEx: Enhancing Generation in Explainable AI for Prostate Cancer [14.372695272204632]
我々は,解釈可能な多属性説明を提供する生成フレームワークであるProjectedExを提案する。
第二に,機能ピラミッドを組み込むことでエンコーダモジュールを強化し,マルチスケールフィードバックにより潜伏空間を改良する。
第3に,ジェネレータと分類器の両方について総合的な実験を行い,ProjectedExの臨床的意義と有効性を示した。
論文 参考訳(メタデータ) (2025-01-02T18:07:36Z) - Multiscale Latent Diffusion Model for Enhanced Feature Extraction from Medical Images [5.395912799904941]
CTスキャナーモデルと取得プロトコルのバリエーションは、抽出した放射能特性に有意な変動をもたらす。
LTDiff++は医療画像の特徴抽出を強化するために設計されたマルチスケール潜在拡散モデルである。
論文 参考訳(メタデータ) (2024-10-05T02:13:57Z) - Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
本稿では,多様なERUSシナリオをカバーする最初のベンチマークデータセットを収集し,注釈付けする。
ERUS-10Kデータセットは77の動画と10,000の高解像度アノテートフレームで構成されています。
本稿では,ASTR (Adaptive Sparse-context TRansformer) という大腸癌セグメンテーションのベンチマークモデルを提案する。
論文 参考訳(メタデータ) (2024-08-19T15:04:42Z) - Post-Hoc Explainability of BI-RADS Descriptors in a Multi-task Framework
for Breast Cancer Detection and Segmentation [48.08423125835335]
MT-BI-RADSは乳房超音波(BUS)画像における腫瘍検出のための新しい深層学習手法である。
放射線科医が腫瘍の悪性度を予測するための意思決定プロセスを理解するための3つのレベルの説明を提供する。
論文 参考訳(メタデータ) (2023-08-27T22:07:42Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
胃内視鏡検査は、早期に適切な胃癌(GC)治療を判定し、GC関連死亡率を低下させる有効な方法である。
本稿では,一般のGC治療指導と直接一致する5つのGC病理のサブ分類を可能にする実用的なAIシステムを提案する。
論文 参考訳(メタデータ) (2022-02-17T08:33:52Z) - Implementation of Convolutional Neural Network Architecture on 3D
Multiparametric Magnetic Resonance Imaging for Prostate Cancer Diagnosis [0.0]
磁気共鳴画像における前立腺病変の自動分類のための新しいディープラーニング手法を提案する。
提案手法は受信器動作特性曲線値0.87の領域で分類性能を達成した。
提案フレームワークは前立腺癌における医用画像の解釈を補助し,不必要な生検を減らす可能性を反映している。
論文 参考訳(メタデータ) (2021-12-29T16:47:52Z) - MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of
Pancreatic Cancer [5.604939010661757]
膵癌は世界で最も悪性ながんの1つであり、非常に高い死亡率で急速に悪化する。
自動ワークフローを実現するために,ハイブリッドな高性能ディープラーニングモデルを提案する。
4240個のROSE画像のデータセットを収集し、この未探索領域における手法を評価する。
論文 参考訳(メタデータ) (2021-12-27T05:04:11Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
本研究では,深層学習に基づく脳波チャンネルの特徴レベル融合を行う。
チャネル選択,融合,分類手順を2つの最適化アルゴリズムで最適化した。
論文 参考訳(メタデータ) (2021-12-18T14:17:49Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
本研究は、COVID-19 LCXRデータ不足のバランスをとるために画像変換を適用するために、文献の体系を活用することを目的としている。
convolutional neural networks(cnns)のようなディープラーニング技術は、健康状態と疾患状態を区別する特徴を選択することができる。
本研究は,CNNアーキテクチャを用いて高速多クラスLCXR分類を94%精度で行う。
論文 参考訳(メタデータ) (2021-04-06T02:01:43Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
頭頸部腫瘍の早期発見は患者の生存に不可欠である。
ハイパースペクトルイメージング(HSI)は頭頸部腫瘍の非侵襲的検出に用いられる。
HSIに基づく喉頭癌診断のための複数の深層学習手法を提案する。
論文 参考訳(メタデータ) (2020-04-21T17:07:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。