論文の概要: Large Language Models for Multi-Robot Systems: A Survey
- arxiv url: http://arxiv.org/abs/2502.03814v2
- Date: Mon, 10 Feb 2025 23:37:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:06:45.994202
- Title: Large Language Models for Multi-Robot Systems: A Survey
- Title(参考訳): マルチロボットシステムのための大規模言語モデル:サーベイ
- Authors: Peihan Li, Zijian An, Shams Abrar, Lifeng Zhou,
- Abstract要約: マルチロボットシステム(MRS)は、調整、スケーラビリティ、現実の適応性など、ユニークな課題を提起する。
このサーベイは、MSSへのLLM(Large Language Models)統合に関する最初の包括的な調査を提供する。
家庭用ロボティクス、建設、構成制御、目標追跡、ロボットゲームなど、さまざまな分野における重要な応用に焦点を当てる。
- 参考スコア(独自算出の注目度): 9.31855372655603
- License:
- Abstract: The rapid advancement of Large Language Models (LLMs) has opened new possibilities in Multi-Robot Systems (MRS), enabling enhanced communication, task planning, and human-robot interaction. Unlike traditional single-robot and multi-agent systems, MRS poses unique challenges, including coordination, scalability, and real-world adaptability. This survey provides the first comprehensive exploration of LLM integration into MRS. It systematically categorizes their applications across high-level task allocation, mid-level motion planning, low-level action generation, and human intervention. We highlight key applications in diverse domains, such as household robotics, construction, formation control, target tracking, and robot games, showcasing the versatility and transformative potential of LLMs in MRS. Furthermore, we examine the challenges that limit adapting LLMs in MRS, including mathematical reasoning limitations, hallucination, latency issues, and the need for robust benchmarking systems. Finally, we outline opportunities for future research, emphasizing advancements in fine-tuning, reasoning techniques, and task-specific models. This survey aims to guide researchers in the intelligence and real-world deployment of MRS powered by LLMs. Based on the fast-evolving nature of research in the field, we keep updating the papers in the open-source Github repository.
- Abstract(参考訳): 大規模言語モデル(LLM)の急速な進歩は、マルチロボットシステム(MRS)に新たな可能性をもたらし、コミュニケーションの強化、タスク計画、人間とロボットの相互作用を可能にした。
従来のシングルロボットやマルチエージェントシステムとは異なり、MSSは調整、スケーラビリティ、現実の適応性など、ユニークな課題を課している。
本調査は,LSMのMDSへの統合を包括的に調査し,高レベルなタスクアロケーション,中レベルな動作計画,低レベルなアクション生成,人間の介入を体系的に分類する。
家庭用ロボット, 構成制御, ターゲットトラッキング, ロボットゲームなど, 多様な分野における重要な応用を強調し, 数学的推論の限界, 幻覚, 遅延問題, 堅牢なベンチマークシステムの必要性など, MRSにおけるLSMの汎用性と変換可能性を示す。
最後に、今後の研究の機会を概説し、微調整、推論技術、タスク特化モデルの進歩を強調した。
この調査は、LSMを利用したMSSのインテリジェンスと実世界の展開の研究者を導くことを目的としている。
この分野における研究の急速な進化の性質に基づいて、私たちはオープンソースGithubリポジトリの論文をアップデートし続けています。
関連論文リスト
- MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
大規模言語モデル(LLM)は、ロボティクスの操作やナビゲーションなど、さまざまな領域にまたがる優れた計画能力を示している。
特殊なLLMエージェント間で高レベル計画および低レベル制御コード生成を分散する新しいマルチエージェントLLMフレームワークを提案する。
長軸タスクを含む9つのRLBenchタスクに対するアプローチを評価し、ゼロショット環境でロボット操作を解く能力を実証した。
論文 参考訳(メタデータ) (2024-11-26T17:53:44Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
クロスモーダル推論(CMR)は、より高度な人工知能システムへの進化における重要な能力として、ますます認識されている。
CMRタスクに取り組むためにLLM(Large Language Models)をデプロイする最近のトレンドは、その有効性を高めるためのアプローチの新たな主流となっている。
本調査では,LLMを用いてCMRで適用された現在の方法論を,詳細な3階層分類に分類する。
論文 参考訳(メタデータ) (2024-09-19T02:51:54Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。
本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (2024-08-02T15:14:53Z) - LLMs Meet Multimodal Generation and Editing: A Survey [89.76691959033323]
本調査では,画像,ビデオ,3D,オーディオなど,さまざまな領域にわたるマルチモーダル生成と編集について詳述する。
これらの分野でのマイルストーンの成果を要約し、これらの研究をLLM法とCLIP/T5法に分類する。
我々は、既存の生成モデルを人間とコンピュータの相互作用に活用できるツール強化マルチモーダルエージェントを掘り下げる。
論文 参考訳(メタデータ) (2024-05-29T17:59:20Z) - Large Language Model based Multi-Agents: A Survey of Progress and Challenges [44.92286030322281]
大規模言語モデル(LLM)は、幅広いタスクで大きな成功を収めています。
近年, 1 つの LLM を単一計画や意思決定エージェントとして利用する手法の開発により, 複雑な問題解決や世界シミュレーションにおいて, LLM ベースのマルチエージェントシステムは大きな進歩を遂げている。
論文 参考訳(メタデータ) (2024-01-21T23:36:14Z) - Large Language Models for Robotics: Opportunities, Challenges, and
Perspectives [46.57277568357048]
大規模言語モデル(LLM)は大幅に拡張され、様々な領域にまたがって統合されている。
ロボットが複雑な環境と対話する具体的タスクでは、テキストのみのLLMは、ロボットの視覚知覚との互換性が欠如しているため、しばしば課題に直面している。
本稿では,マルチモーダル GPT-4V を利用して,自然言語命令とロボットの視覚認識を組み合わせることで,具体的タスク計画を強化するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-09T03:22:16Z) - Chat with the Environment: Interactive Multimodal Perception Using Large
Language Models [19.623070762485494]
大型言語モデル(LLM)は、数発のロボット計画において顕著な推論能力を示している。
本研究は,LLMがマルチモーダル環境下での対話型ロボットの動作を制御し,高レベルな計画と推論能力を提供することを示す。
論文 参考訳(メタデータ) (2023-03-14T23:01:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。