論文の概要: Beyond Self-Talk: A Communication-Centric Survey of LLM-Based Multi-Agent Systems
- arxiv url: http://arxiv.org/abs/2502.14321v1
- Date: Thu, 20 Feb 2025 07:18:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:27:02.462790
- Title: Beyond Self-Talk: A Communication-Centric Survey of LLM-Based Multi-Agent Systems
- Title(参考訳): セルフトークを超えて: LLMに基づくマルチエージェントシステムのコミュニケーション中心調査
- Authors: Bingyu Yan, Xiaoming Zhang, Litian Zhang, Lian Zhang, Ziyi Zhou, Dezhuang Miao, Chaozhuo Li,
- Abstract要約: 大規模言語モデル(LLM)は、最近、推論、計画、意思決定において顕著な能力を示した。
研究者はLLMをマルチエージェントシステムに組み込んで、単一エージェント設定の範囲を超えてタスクに取り組むようになった。
この調査はさらなるイノベーションの触媒として機能し、より堅牢でスケーラブルでインテリジェントなマルチエージェントシステムを促進する。
- 参考スコア(独自算出の注目度): 11.522282769053817
- License:
- Abstract: Large Language Models (LLMs) have recently demonstrated remarkable capabilities in reasoning, planning, and decision-making. Building upon these strengths, researchers have begun incorporating LLMs into multi-agent systems (MAS), where agents collaborate or compete through natural language interactions to tackle tasks beyond the scope of single-agent setups. In this survey, we present a communication-centric perspective on LLM-based multi-agent systems, examining key system-level features such as architecture design and communication goals, as well as internal mechanisms like communication strategies, paradigms, objects and content. We illustrate how these communication elements interplay to enable collective intelligence and flexible collaboration. Furthermore, we discuss prominent challenges, including scalability, security, and multimodal integration, and propose directions for future work to advance research in this emerging domain. Ultimately, this survey serves as a catalyst for further innovation, fostering more robust, scalable, and intelligent multi-agent systems across diverse application domains.
- Abstract(参考訳): 大規模言語モデル(LLM)は、最近、推論、計画、意思決定において顕著な能力を示した。
これらの強みを生かして、研究者はLLMをマルチエージェントシステム(MAS)に組み入れ始め、エージェントは自然言語によるインタラクションを通じて、単一エージェントの設定の範囲を超えてタスクに取り組む。
本稿では,LLMに基づくマルチエージェントシステムにおけるコミュニケーション中心の視点を示し,アーキテクチャ設計やコミュニケーション目標といった重要なシステムレベルの特徴と,コミュニケーション戦略やパラダイム,オブジェクト,コンテンツといった内部メカニズムについて考察する。
これらのコミュニケーション要素がどのように相互作用し、集団的な知性と柔軟なコラボレーションを可能にするかを説明する。
さらに,スケーラビリティ,セキュリティ,マルチモーダル統合といった課題についても論じ,今後の研究を進めるための方向性を提案する。
最終的には、この調査はさらなるイノベーションの触媒として機能し、さまざまなアプリケーションドメインにわたるより堅牢でスケーラブルでインテリジェントなマルチエージェントシステムを促進します。
関連論文リスト
- Large Language Models for Multi-Robot Systems: A Survey [9.31855372655603]
マルチロボットシステム(MRS)は、調整、スケーラビリティ、現実の適応性など、ユニークな課題を提起する。
このサーベイは、MSSへのLLM(Large Language Models)統合に関する最初の包括的な調査を提供する。
家庭用ロボティクス、建設、構成制御、目標追跡、ロボットゲームなど、さまざまな分野における重要な応用に焦点を当てる。
論文 参考訳(メタデータ) (2025-02-06T06:52:14Z) - Multi-Agent Collaboration Mechanisms: A Survey of LLMs [6.545098975181273]
マルチエージェントシステム(Multi-Agent Systems、MAS)は、知的エージェントのグループによる複雑なタスクの協調と解決を可能にする。
この研究は、MASの協調的な側面に関する広範な調査を提供し、将来の研究を導くための枠組みを紹介している。
論文 参考訳(メタデータ) (2025-01-10T19:56:50Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。
本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (2024-08-02T15:14:53Z) - Large Multimodal Agents: A Survey [78.81459893884737]
大規模言語モデル(LLM)は、テキストベースのAIエージェントのパワーで優れたパフォーマンスを実現している。
LLMを利用したAIエージェントをマルチモーダルドメインに拡張することに焦点を当てた、新たな研究トレンドがある。
本総説は, この急速に発展する分野において, 今後の研究に有用な洞察とガイドラインを提供することを目的としている。
論文 参考訳(メタデータ) (2024-02-23T06:04:23Z) - LLM Multi-Agent Systems: Challenges and Open Problems [14.174833743880244]
本稿では,既存のマルチエージェントシステムについて検討し,未解決の課題を特定する。
マルチエージェントシステムにおける個々のエージェントの多様な機能と役割を活用することで、これらのシステムはコラボレーションを通じて複雑なタスクに取り組むことができる。
本稿では,タスク割り当ての最適化,反復的議論による堅牢な推論の促進,複雑で階層的なコンテキスト情報の管理,マルチエージェントシステム内の複雑なインタラクションを支援するためのメモリ管理の強化について論じる。
論文 参考訳(メタデータ) (2024-02-05T23:06:42Z) - Exploring Large Language Model based Intelligent Agents: Definitions,
Methods, and Prospects [32.91556128291915]
本稿では, シングルエージェントおよびマルチエージェントシステムにおける知的エージェントの詳細な概要を提供するため, 現在の研究状況について調査する。
定義、研究フレームワーク、その構成、認知と計画方法、ツール利用、環境フィードバックに対する反応などの基礎的な構成要素を網羅する。
我々は、AIと自然言語処理の進化の展望を考慮し、LLMベースのエージェントの展望を思い浮かべて結論付ける。
論文 参考訳(メタデータ) (2024-01-07T09:08:24Z) - Large Language Model Enhanced Multi-Agent Systems for 6G Communications [94.45712802626794]
本稿では,自然言語を用いたコミュニケーション関連タスクを解くための,カスタマイズされたコミュニケーション知識とツールを備えたマルチエージェントシステムを提案する。
セマンティック通信システムの設計により,提案方式の有効性を検証した。
論文 参考訳(メタデータ) (2023-12-13T02:35:57Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
我々は,大言語モデル(LLM)を評価するためにスコーラブルネゴシエーション(scorable negotiations)を提案する。
合意に達するには、エージェントは強力な算術、推論、探索、計画能力を持つ必要がある。
我々は、新しいゲームを作成し、進化するベンチマークを持つことの難しさを増大させる手順を提供する。
論文 参考訳(メタデータ) (2023-09-29T13:33:06Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
本研究では, 分散制御, 生の知覚観察, コストのかかるコミュニケーション, 様々な実施環境下でインスタンス化された多目的タスクといった課題に対処する。
我々は,LLMの常識知識,推論能力,言語理解,テキスト生成能力を活用し,認知に触発されたモジュラーフレームワークにシームレスに組み込む。
C-WAH と TDW-MAT を用いた実験により, GPT-4 で駆動される CoELA が, 強い計画に基づく手法を超越し, 創発的な効果的なコミュニケーションを示すことを示した。
論文 参考訳(メタデータ) (2023-07-05T17:59:27Z) - Multi-Agent Collaboration: Harnessing the Power of Intelligent LLM
Agents [0.0]
本稿では,マルチエージェントシステムのパワーを活用した大規模言語モデル(LLM)の能力向上のための新しいフレームワークを提案する。
本フレームワークでは,複数の知的エージェントコンポーネントがそれぞれ特有な属性と役割を持つ協調環境を導入し,複雑なタスクをより効率的に効率的に処理する。
論文 参考訳(メタデータ) (2023-06-05T23:55:37Z) - CAMEL: Communicative Agents for "Mind" Exploration of Large Language
Model Society [58.04479313658851]
本稿では,コミュニケーションエージェント間の自律的協調を支援するスケーラブルな手法の構築の可能性について検討する。
本稿では,ロールプレイングという新しいコミュニケーションエージェントフレームワークを提案する。
コントリビューションには、新しいコミュニケーティブエージェントフレームワークの導入、マルチエージェントシステムの協調行動や能力を研究するためのスケーラブルなアプローチの提供などが含まれます。
論文 参考訳(メタデータ) (2023-03-31T01:09:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。