論文の概要: Enhancing people localisation in drone imagery for better crowd management by utilising every pixel in high-resolution images
- arxiv url: http://arxiv.org/abs/2502.04014v1
- Date: Thu, 06 Feb 2025 12:16:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:31:37.493567
- Title: Enhancing people localisation in drone imagery for better crowd management by utilising every pixel in high-resolution images
- Title(参考訳): 高解像度画像のすべてのピクセルを利用すれば、ドローン画像のローカライズを強化して群衆管理を向上できる
- Authors: Bartosz Ptak, Marek Kraft,
- Abstract要約: ポイント指向オブジェクトローカライゼーションに特化した新しいアプローチを提案する。
Pixel Distillモジュールは高精細画像の処理を強化するために導入された。
UP-COUNTと名付けられた新しいデータセットは、現代のドローン用途に合わせている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Accurate people localisation using drones is crucial for effective crowd management, not only during massive events and public gatherings but also for monitoring daily urban crowd flow. Traditional methods for tiny object localisation using high-resolution drone imagery often face limitations in precision and efficiency, primarily due to constraints in image scaling and sliding window techniques. To address these challenges, a novel approach dedicated to point-oriented object localisation is proposed. Along with this approach, the Pixel Distill module is introduced to enhance the processing of high-definition images by extracting spatial information from individual pixels at once. Additionally, a new dataset named UP-COUNT, tailored to contemporary drone applications, is shared. It addresses a wide range of challenges in drone imagery, such as simultaneous camera and object movement during the image acquisition process, pushing forward the capabilities of crowd management applications. A comprehensive evaluation of the proposed method on the proposed dataset and the commonly used DroneCrowd dataset demonstrates the superiority of our approach over existing methods and highlights its efficacy in drone-based crowd object localisation tasks. These improvements markedly increase the algorithm's applicability to operate in real-world scenarios, enabling more reliable localisation and counting of individuals in dynamic environments.
- Abstract(参考訳): ドローンによる正確な人員配置は、大規模なイベントや集会だけでなく、日々の都会の群衆の流れのモニタリングにも不可欠である。
従来の高解像度のドローン画像を用いた微小物体のローカライゼーション手法は、画像スケーリングやスライディングウインドウの手法に制約があるため、精度と効率の限界に直面することが多い。
これらの課題に対処するために、ポイント指向のオブジェクトローカライゼーションに特化した新しいアプローチを提案する。
このアプローチとともに、Pixel Distillモジュールを導入し、個々のピクセルから空間情報を一度に抽出することで、高精細画像の処理を強化する。
さらに、現代のドローンアプリケーションに適したUP-COUNTという新しいデータセットも共有されている。
これは、画像取得プロセス中のカメラとオブジェクトの同時移動のような、ドローン画像における幅広い課題に対処し、群衆管理アプリケーションの能力を推し進める。
提案したデータセットと一般的に使用されているDroneCrowdデータセットの総合的な評価は,既存の手法よりもアプローチが優れていることを示し,ドローンによるクラウドオブジェクトのローカライゼーションタスクにおけるその有効性を強調している。
これらの改善により、実際のシナリオで運用するアルゴリズムの適用性が著しく向上し、動的環境における個人のより信頼性の高いローカライゼーションとカウントが可能になる。
関連論文リスト
- A Cross-Scene Benchmark for Open-World Drone Active Tracking [54.235808061746525]
Drone Visual Active Trackingは、視覚的な観察に基づいてモーションシステムを制御することで、対象物を自律的に追跡することを目的としている。
DATと呼ばれるオープンワールドドローンアクティブトラッキングのためのクロスシーンクロスドメインベンチマークを提案する。
また、R-VATと呼ばれる強化学習に基づくドローン追跡手法を提案する。
論文 参考訳(メタデータ) (2024-12-01T09:37:46Z) - Resource-Efficient Multiview Perception: Integrating Semantic Masking with Masked Autoencoders [6.498925999634298]
本稿では、マスク付きオートエンコーダ(MAE)を用いた通信効率の高い分散マルチビュー検出と追跡のための新しい手法を提案する。
本稿では,事前訓練されたセグメンテーションモデルと調整可能なパワー関数を利用して,情報領域の優先順位付けを行う意味誘導型マスキング手法を提案する。
我々は,仮想および実世界のマルチビューデータセットを用いて本手法の評価を行い,性能指標の検出と追跡において同等の性能を示す。
論文 参考訳(メタデータ) (2024-10-07T08:06:41Z) - Resource Efficient Perception for Vision Systems [0.0]
本研究では,高解像度画像に対するメモリ効率のパッチベース処理を活用することにより,これらの課題を軽減するためのフレームワークを提案する。
ローカルなパッチ情報と共にグローバルなコンテキスト表現が組み込まれており、画像の内容の包括的な理解を可能にする。
分類,オブジェクト検出,セグメンテーションにまたがる7つのベンチマークにおいて,本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-05-12T05:33:00Z) - OmniLocalRF: Omnidirectional Local Radiance Fields from Dynamic Videos [14.965321452764355]
我々はOmnidirectional Local Radiance Fields (OmniLocalRF)と呼ばれる新しいアプローチを導入し、静的のみのシーンビューをレンダリングする。
本手法は局所放射界の原理と全方位光の双方向最適化を組み合わせたものである。
実験により,OmniLocalRFは定性的,定量的に既存手法より優れていることを確認した。
論文 参考訳(メタデータ) (2024-03-31T12:55:05Z) - VICAN: Very Efficient Calibration Algorithm for Large Camera Networks [49.17165360280794]
ポースグラフ最適化手法を拡張する新しい手法を提案する。
我々は、カメラを含む二部グラフ、オブジェクトの動的進化、各ステップにおけるカメラオブジェクト間の相対変換について考察する。
我々のフレームワークは従来のPGOソルバとの互換性を維持しているが、その有効性はカスタマイズされた最適化方式の恩恵を受けている。
論文 参考訳(メタデータ) (2024-03-25T17:47:03Z) - Robust Zero-Shot Crowd Counting and Localization With Adaptive Resolution SAM [55.93697196726016]
本稿では,SEEM(Seegment-Everything-Everywhere Model)を用いた簡易かつ効果的な群集カウント手法を提案する。
密集した群集シーンにおけるSEEMの性能は,高密度領域の多くの人々が欠落していることが主な原因である。
提案手法は,群集カウントにおいて最高の教師なし性能を実現すると同時に,いくつかの教師付き手法に匹敵する性能を示す。
論文 参考訳(メタデータ) (2024-02-27T13:55:17Z) - Spatially-Attentive Patch-Hierarchical Network with Adaptive Sampling
for Motion Deblurring [34.751361664891235]
そこで本稿では,異なる空間領域にまたがる大きなぼやけた変化を扱うために,画素適応化と特徴注意設計を提案する。
提案手法は,最先端のデブロワーリングアルゴリズムに対して良好に動作することを示す。
論文 参考訳(メタデータ) (2024-02-09T01:00:09Z) - Generalizing Event-Based Motion Deblurring in Real-World Scenarios [62.995994797897424]
イベントベースの動作遅延は、低レイテンシイベントを活用することで、有望な結果を示している。
本研究では,フレキシブルな入力空間スケールを実現するとともに,時間スケールの異なる動きのぼかしから学習できるスケール対応ネットワークを提案する。
次に,実世界のデータ分布に適合する2段階の自己教師型学習手法を開発した。
論文 参考訳(メタデータ) (2023-08-11T04:27:29Z) - Estimating Egocentric 3D Human Pose in Global Space [70.7272154474722]
本稿では,魚眼カメラを用いた自己中心型3次元体姿勢推定法を提案する。
提案手法は, 定量的, 定性的に, 最先端の手法より優れている。
論文 参考訳(メタデータ) (2021-04-27T20:01:57Z) - Self-supervised Human Detection and Segmentation via Multi-view
Consensus [116.92405645348185]
本稿では,トレーニング中に幾何学的制約を多視点一貫性という形で組み込むマルチカメラフレームワークを提案する。
本手法は,標準ベンチマークから視覚的に外れた画像に対して,最先端の自己監視的人物検出とセグメンテーション技術に勝ることを示す。
論文 参考訳(メタデータ) (2020-12-09T15:47:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。