3D Prior is All You Need: Cross-Task Few-shot 2D Gaze Estimation
- URL: http://arxiv.org/abs/2502.04074v1
- Date: Thu, 06 Feb 2025 13:37:09 GMT
- Title: 3D Prior is All You Need: Cross-Task Few-shot 2D Gaze Estimation
- Authors: Yihua Cheng, Hengfei Wang, Zhongqun Zhang, Yang Yue, Bo Eun Kim, Feng Lu, Hyung Jin Chang,
- Abstract summary: We introduce a novel cross-task 2D gaze estimation approach, aiming to adapt a pre-trained 3D gaze estimation network for 2D gaze prediction on unseen devices.
This task is highly challenging due to the domain gap between 3D and 2D gaze, unknown screen poses, and limited training data.
We evaluate our method on MPIIGaze, EVE, and GazeCapture datasets, collected respectively on laptops, desktop computers, and mobile devices.
- Score: 27.51272922798475
- License:
- Abstract: 3D and 2D gaze estimation share the fundamental objective of capturing eye movements but are traditionally treated as two distinct research domains. In this paper, we introduce a novel cross-task few-shot 2D gaze estimation approach, aiming to adapt a pre-trained 3D gaze estimation network for 2D gaze prediction on unseen devices using only a few training images. This task is highly challenging due to the domain gap between 3D and 2D gaze, unknown screen poses, and limited training data. To address these challenges, we propose a novel framework that bridges the gap between 3D and 2D gaze. Our framework contains a physics-based differentiable projection module with learnable parameters to model screen poses and project 3D gaze into 2D gaze. The framework is fully differentiable and can integrate into existing 3D gaze networks without modifying their original architecture. Additionally, we introduce a dynamic pseudo-labelling strategy for flipped images, which is particularly challenging for 2D labels due to unknown screen poses. To overcome this, we reverse the projection process by converting 2D labels to 3D space, where flipping is performed. Notably, this 3D space is not aligned with the camera coordinate system, so we learn a dynamic transformation matrix to compensate for this misalignment. We evaluate our method on MPIIGaze, EVE, and GazeCapture datasets, collected respectively on laptops, desktop computers, and mobile devices. The superior performance highlights the effectiveness of our approach, and demonstrates its strong potential for real-world applications.
Related papers
- 2D or not 2D: How Does the Dimensionality of Gesture Representation Affect 3D Co-Speech Gesture Generation? [5.408549711581793]
We study the effect of using either 2D or 3D joint coordinates as training data on the performance of speech-to-gesture deep generative models.
We employ a lifting model for converting generated 2D pose sequences into 3D and assess how gestures created directly in 3D stack up against those initially generated in 2D and then converted to 3D.
arXiv Detail & Related papers (2024-09-16T15:06:12Z) - Lift3D: Zero-Shot Lifting of Any 2D Vision Model to 3D [95.14469865815768]
2D vision models can be used for semantic segmentation, style transfer or scene editing, enabled by large-scale 2D image datasets.
However, extending a single 2D vision operator like scene editing to 3D typically requires a highly creative method specialized to that task.
In this paper, we propose Lift3D, which trains to predict unseen views on feature spaces generated by a few visual models.
We even outperform state-of-the-art methods specialized for the task in question.
arXiv Detail & Related papers (2024-03-27T18:13:16Z) - A Single 2D Pose with Context is Worth Hundreds for 3D Human Pose
Estimation [18.72362803593654]
The dominant paradigm in 3D human pose estimation that lifts a 2D pose sequence to 3D heavily relies on long-term temporal clues.
This can be attributed to their inherent inability to perceive spatial context as plain 2D joint coordinates carry no visual cues.
We propose a straightforward yet powerful solution: leveraging the readily available intermediate visual representations produced by off-the-shelf (pre-trained) 2D pose detectors.
arXiv Detail & Related papers (2023-11-06T18:04:13Z) - NDC-Scene: Boost Monocular 3D Semantic Scene Completion in Normalized
Device Coordinates Space [77.6067460464962]
Monocular 3D Semantic Scene Completion (SSC) has garnered significant attention in recent years due to its potential to predict complex semantics and geometry shapes from a single image, requiring no 3D inputs.
We identify several critical issues in current state-of-the-art methods, including the Feature Ambiguity of projected 2D features in the ray to the 3D space, the Pose Ambiguity of the 3D convolution, and the Imbalance in the 3D convolution across different depth levels.
We devise a novel Normalized Device Coordinates scene completion network (NDC-Scene) that directly extends the 2
arXiv Detail & Related papers (2023-09-26T02:09:52Z) - Multi-View Representation is What You Need for Point-Cloud Pre-Training [22.55455166875263]
This paper proposes a novel approach to point-cloud pre-training that learns 3D representations by leveraging pre-trained 2D networks.
We train the 3D feature extraction network with the help of the novel 2D knowledge transfer loss.
Experimental results demonstrate that our pre-trained model can be successfully transferred to various downstream tasks.
arXiv Detail & Related papers (2023-06-05T03:14:54Z) - GazeNeRF: 3D-Aware Gaze Redirection with Neural Radiance Fields [100.53114092627577]
Existing gaze redirection methods operate on 2D images and struggle to generate 3D consistent results.
We build on the intuition that the face region and eyeballs are separate 3D structures that move in a coordinated yet independent fashion.
arXiv Detail & Related papers (2022-12-08T13:19:11Z) - FCOS3D: Fully Convolutional One-Stage Monocular 3D Object Detection [78.00922683083776]
It is non-trivial to make a general adapted 2D detector work in this 3D task.
In this technical report, we study this problem with a practice built on fully convolutional single-stage detector.
Our solution achieves 1st place out of all the vision-only methods in the nuScenes 3D detection challenge of NeurIPS 2020.
arXiv Detail & Related papers (2021-04-22T09:35:35Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
We present a new approach that enables us to leverage 3D features extracted from large-scale 3D data repository to enhance 2D features extracted from RGB images.
First, we distill 3D knowledge from a pretrained 3D network to supervise a 2D network to learn simulated 3D features from 2D features during the training.
Second, we design a two-stage dimension normalization scheme to calibrate the 2D and 3D features for better integration.
Third, we design a semantic-aware adversarial training model to extend our framework for training with unpaired 3D data.
arXiv Detail & Related papers (2021-04-06T02:22:24Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
State-of-the-art methods for large-scale driving-scene LiDAR semantic segmentation often project and process the point clouds in the 2D space.
A straightforward solution to tackle the issue of 3D-to-2D projection is to keep the 3D representation and process the points in the 3D space.
We develop a 3D cylinder partition and a 3D cylinder convolution based framework, termed as Cylinder3D, which exploits the 3D topology relations and structures of driving-scene point clouds.
arXiv Detail & Related papers (2020-08-04T13:56:19Z) - HOPE-Net: A Graph-based Model for Hand-Object Pose Estimation [7.559220068352681]
We propose a lightweight model called HOPE-Net which jointly estimates hand and object pose in 2D and 3D in real-time.
Our network uses a cascade of two adaptive graph convolutional neural networks, one to estimate 2D coordinates of the hand joints and object corners, followed by another to convert 2D coordinates to 3D.
arXiv Detail & Related papers (2020-03-31T19:01:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.