Ancient Greek Technology: An Immersive Learning Use Case Described Using a Co-Intelligent Custom ChatGPT Assistant
- URL: http://arxiv.org/abs/2502.04110v1
- Date: Thu, 06 Feb 2025 14:35:42 GMT
- Title: Ancient Greek Technology: An Immersive Learning Use Case Described Using a Co-Intelligent Custom ChatGPT Assistant
- Authors: Vlasis Kasapakis, Leonel Morgado,
- Abstract summary: This paper constitutes an example of how structured case reports can be a novel contribution to immersive learning literature.
We report that the use of a ChatGPT assistant significantly sup-ports the coherence and quality of the team members development of the final ILCS.
- Score: 0.0
- License:
- Abstract: Achieving consistency in immersive learning case descriptions is essential but challenging due to variations in research focus, methodology, and researchers' background. We address these challenges by leveraging the Immersive Learning Case Sheet (ILCS), a methodological instrument to standardize case descriptions, that we applied to an immersive learning case on ancient Greek technology in VRChat. Research team members had differing levels of familiarity with the ILCS and the case content, so we developed a custom ChatGPT assistant to facilitate consistent terminology and process alignment across the team. This paper constitutes an example of how structured case reports can be a novel contribution to immersive learning literature. Our findings demonstrate how the ILCS supports structured reflection and interpretation of the case. Further we report that the use of a ChatGPT assistant significantly sup-ports the coherence and quality of the team members development of the final ILCS. This exposes the potential of employing AI-driven tools to enhance collaboration and standardization of research practices in qualitative educational research. However, we also discuss the limitations and challenges, including reliance on AI for interpretive tasks and managing varied levels of expertise within the team. This study thus provides insights into the practical application of AI in standardizing immersive learning research processes.
Related papers
- Survey on Vision-Language-Action Models [0.2636873872510828]
This work does not represent original research, but highlights how AI can help automate literature reviews.
Future research will focus on developing a structured framework for AI-assisted literature reviews.
arXiv Detail & Related papers (2025-02-07T11:56:46Z) - SAME: Learning Generic Language-Guided Visual Navigation with State-Adaptive Mixture of Experts [54.11162991206203]
This paper consolidates diverse navigation tasks into a unified and generic framework.
We propose a novel State-Adaptive Mixture of Experts (SAME) model that effectively enables an agent to infer decisions.
arXiv Detail & Related papers (2024-12-07T06:12:53Z) - Utilizing ChatGPT in a Data Structures and Algorithms Course: A Teaching Assistant's Perspective [1.0650780147044159]
This research delves into the use of ChatGPT in a data structures and algorithms (DSA) course, particularly when combined with TA supervision.
The findings demonstrate that incorporating ChatGPT with structured prompts and active TA guidance enhances students' understanding of intricate algorithmic concepts, boosts engagement, and academic performance.
The study underscores the importance of active TA involvement in reducing students' reliance on AI-generated content and amplifying the overall educational impact.
arXiv Detail & Related papers (2024-10-11T15:18:48Z) - Knowledge Tagging System on Math Questions via LLMs with Flexible Demonstration Retriever [48.5585921817745]
Large Language Models (LLMs) are used to automate the knowledge tagging task.
We show the strong performance of zero- and few-shot results over math questions knowledge tagging tasks.
By proposing a reinforcement learning-based demonstration retriever, we successfully exploit the great potential of different-sized LLMs.
arXiv Detail & Related papers (2024-06-19T23:30:01Z) - Enhancing Instructional Quality: Leveraging Computer-Assisted Textual
Analysis to Generate In-Depth Insights from Educational Artifacts [13.617709093240231]
We examine how artificial intelligence (AI) and machine learning (ML) methods can analyze educational content, teacher discourse, and student responses to foster instructional improvement.
We identify key areas where AI/ML integration offers significant advantages, including teacher coaching, student support, and content development.
This paper emphasizes the importance of aligning AI/ML technologies with pedagogical goals to realize their full potential in educational settings.
arXiv Detail & Related papers (2024-03-06T18:29:18Z) - A Review of Hybrid and Ensemble in Deep Learning for Natural Language Processing [0.5266869303483376]
Review systematically introduces each task, delineates key architectures from Recurrent Neural Networks (RNNs) to Transformer-based models like BERT.
The adaptability of ensemble techniques is emphasized, highlighting their capacity to enhance various NLP applications.
Challenges in implementation, including computational overhead, overfitting, and model interpretation complexities, are addressed.
arXiv Detail & Related papers (2023-12-09T14:49:34Z) - Igniting Language Intelligence: The Hitchhiker's Guide From
Chain-of-Thought Reasoning to Language Agents [80.5213198675411]
Large language models (LLMs) have dramatically enhanced the field of language intelligence.
LLMs leverage the intriguing chain-of-thought (CoT) reasoning techniques, obliging them to formulate intermediate steps en route to deriving an answer.
Recent research endeavors have extended CoT reasoning methodologies to nurture the development of autonomous language agents.
arXiv Detail & Related papers (2023-11-20T14:30:55Z) - How Generative AI models such as ChatGPT can be (Mis)Used in SPC
Practice, Education, and Research? An Exploratory Study [2.0841728192954663]
Generative Artificial Intelligence (AI) models have the potential to revolutionize Statistical Process Control (SPC) practice, learning, and research.
These tools are in the early stages of development and can be easily misused or misunderstood.
We explore ChatGPT's ability to provide code, explain basic concepts, and create knowledge related to SPC practice, learning, and research.
arXiv Detail & Related papers (2023-02-17T15:48:37Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
We conduct a thorough and rigorous study on fairness disparities in peer review with the help of large language models (LMs)
We collect, assemble, and maintain a comprehensive relational database for the International Conference on Learning Representations (ICLR) conference from 2017 to date.
We postulate and study fairness disparities on multiple protective attributes of interest, including author gender, geography, author, and institutional prestige.
arXiv Detail & Related papers (2022-11-07T16:19:42Z) - elBERto: Self-supervised Commonsense Learning for Question Answering [131.51059870970616]
We propose a Self-supervised Bidirectional Representation Learning of Commonsense framework, which is compatible with off-the-shelf QA model architectures.
The framework comprises five self-supervised tasks to force the model to fully exploit the additional training signals from contexts containing rich commonsense.
elBERto achieves substantial improvements on out-of-paragraph and no-effect questions where simple lexical similarity comparison does not help.
arXiv Detail & Related papers (2022-03-17T16:23:45Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.