Adaptive Margin Contrastive Learning for Ambiguity-aware 3D Semantic Segmentation
- URL: http://arxiv.org/abs/2502.04111v1
- Date: Thu, 06 Feb 2025 14:39:16 GMT
- Title: Adaptive Margin Contrastive Learning for Ambiguity-aware 3D Semantic Segmentation
- Authors: Yang Chen, Yueqi Duan, Runzhong Zhang, Yap-Peng Tan,
- Abstract summary: We propose an adaptive margin contrastive learning method for 3D point cloud semantic segmentation, namely AMContrast3D.<n>We design adaptive objectives for individual points based on their ambiguity levels, aiming to ensure the correctness of low-ambiguity points while allowing mistakes for high-ambiguity points.<n> Experimental results on large-scale datasets, S3DIS and ScanNet, demonstrate that our method outperforms state-of-the-art methods.
- Score: 25.29651362098539
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose an adaptive margin contrastive learning method for 3D point cloud semantic segmentation, namely AMContrast3D. Most existing methods use equally penalized objectives, which ignore per-point ambiguities and less discriminated features stemming from transition regions. However, as highly ambiguous points may be indistinguishable even for humans, their manually annotated labels are less reliable, and hard constraints over these points would lead to sub-optimal models. To address this, we design adaptive objectives for individual points based on their ambiguity levels, aiming to ensure the correctness of low-ambiguity points while allowing mistakes for high-ambiguity points. Specifically, we first estimate ambiguities based on position embeddings. Then, we develop a margin generator to shift decision boundaries for contrastive feature embeddings, so margins are narrowed due to increasing ambiguities with even negative margins for extremely high-ambiguity points. Experimental results on large-scale datasets, S3DIS and ScanNet, demonstrate that our method outperforms state-of-the-art methods.
Related papers
- Ambiguity-aware Point Cloud Segmentation by Adaptive Margin Contrastive Learning [65.94127546086156]
We propose an adaptive margin contrastive learning method for semantic segmentation on point clouds.<n>We first design AMContrast3D, a method comprising contrastive learning into an ambiguity estimation framework.<n>Inspired by the insight of joint training, we propose AMContrast3D++ integrating with two branches trained in parallel.
arXiv Detail & Related papers (2025-07-09T07:00:32Z) - High-quality Pseudo-labeling for Point Cloud Segmentation with Scene-level Annotation [32.03087826213936]
This paper investigates indoor point cloud semantic segmentation under scene-level annotation.<n>Current methods first generate point-level pseudo-labels, which are then used to train segmentation models.<n>To enhance accuracy, this paper proposes a high-quality pseudo-label generation framework.
arXiv Detail & Related papers (2025-06-29T13:17:12Z) - Towards Modality-agnostic Label-efficient Segmentation with Entropy-Regularized Distribution Alignment [62.73503467108322]
This topic is widely studied in 3D point cloud segmentation due to the difficulty of annotating point clouds densely.
Until recently, pseudo-labels have been widely employed to facilitate training with limited ground-truth labels.
Existing pseudo-labeling approaches could suffer heavily from the noises and variations in unlabelled data.
We propose a novel learning strategy to regularize the pseudo-labels generated for training, thus effectively narrowing the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2024-08-29T13:31:15Z) - Multi-modality Affinity Inference for Weakly Supervised 3D Semantic
Segmentation [47.81638388980828]
We propose a simple yet effective scene-level weakly supervised point cloud segmentation method with a newly introduced multi-modality point affinity inference module.
Our method outperforms the state-of-the-art by 4% to 6% mIoU on the ScanNet and S3DIS benchmarks.
arXiv Detail & Related papers (2023-12-27T14:01:35Z) - Revisiting Domain-Adaptive 3D Object Detection by Reliable, Diverse and
Class-balanced Pseudo-Labeling [38.07637524378327]
Unsupervised domain adaptation (DA) with the aid of pseudo labeling techniques has emerged as a crucial approach for domain-adaptive 3D object detection.
Existing DA methods suffer from a substantial drop in performance when applied to a multi-class training setting.
We propose a novel ReDB framework tailored for learning to detect all classes at once.
arXiv Detail & Related papers (2023-07-16T04:34:11Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
Pseudo-labels are widely employed in weakly supervised 3D segmentation tasks where only sparse ground-truth labels are available for learning.
We propose a novel learning strategy to regularize the generated pseudo-labels and effectively narrow the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2023-05-25T08:19:31Z) - The Treasure Beneath Multiple Annotations: An Uncertainty-aware Edge
Detector [70.43599299422813]
Existing methods fuse multiple annotations using a simple voting process, ignoring the inherent ambiguity of edges and labeling bias of annotators.
We propose a novel uncertainty-aware edge detector (UAED), which employs uncertainty to investigate the subjectivity and ambiguity of diverse annotations.
UAED achieves superior performance consistently across multiple edge detection benchmarks.
arXiv Detail & Related papers (2023-03-21T13:14:36Z) - Reliability-Adaptive Consistency Regularization for Weakly-Supervised
Point Cloud Segmentation [80.07161039753043]
Weakly-supervised point cloud segmentation with extremely limited labels is desirable to alleviate the expensive costs of collecting densely annotated 3D points.
This paper explores applying the consistency regularization that is commonly used in weakly-supervised learning, for its point cloud counterpart with multiple data-specific augmentations.
We propose a novel Reliability-Adaptive Consistency Network (RAC-Net) to use both prediction confidence and model uncertainty to measure the reliability of pseudo labels.
arXiv Detail & Related papers (2023-03-09T10:41:57Z) - Dual Adaptive Transformations for Weakly Supervised Point Cloud
Segmentation [78.6612285236938]
We propose a novel DAT (textbfDual textbfAdaptive textbfTransformations) model for weakly supervised point cloud segmentation.
We evaluate our proposed DAT model with two popular backbones on the large-scale S3DIS and ScanNet-V2 datasets.
arXiv Detail & Related papers (2022-07-19T05:43:14Z) - Guided Point Contrastive Learning for Semi-supervised Point Cloud
Semantic Segmentation [90.2445084743881]
We present a method for semi-supervised point cloud semantic segmentation to adopt unlabeled point clouds in training to boost the model performance.
Inspired by the recent contrastive loss in self-supervised tasks, we propose the guided point contrastive loss to enhance the feature representation and model generalization ability.
arXiv Detail & Related papers (2021-10-15T16:38:54Z) - Investigate Indistinguishable Points in Semantic Segmentation of 3D
Point Cloud [34.414363402029984]
Indistinguishable points consist of those located in complex boundary, points with similar local textures but different categories, and points in isolate small hard areas.
We propose a novel Indistinguishable Area Focalization Network (IAF-Net), which selects indistinguishable points adaptively by utilizing the hierarchical semantic features.
Our IAF-Net achieves the comparable results with state-of-the-art performance on several popular 3D point cloud datasets.
arXiv Detail & Related papers (2021-03-18T15:54:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.