Ambiguity-aware Point Cloud Segmentation by Adaptive Margin Contrastive Learning
- URL: http://arxiv.org/abs/2507.06592v1
- Date: Wed, 09 Jul 2025 07:00:32 GMT
- Title: Ambiguity-aware Point Cloud Segmentation by Adaptive Margin Contrastive Learning
- Authors: Yang Chen, Yueqi Duan, Haowen Sun, Jiwen Lu, Yap-Peng Tan,
- Abstract summary: We propose an adaptive margin contrastive learning method for semantic segmentation on point clouds.<n>We first design AMContrast3D, a method comprising contrastive learning into an ambiguity estimation framework.<n>Inspired by the insight of joint training, we propose AMContrast3D++ integrating with two branches trained in parallel.
- Score: 65.94127546086156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes an adaptive margin contrastive learning method for 3D semantic segmentation on point clouds. Most existing methods use equally penalized objectives, which ignore the per-point ambiguities and less discriminated features stemming from transition regions. However, as highly ambiguous points may be indistinguishable even for humans, their manually annotated labels are less reliable, and hard constraints over these points would lead to sub-optimal models. To address this, we first design AMContrast3D, a method comprising contrastive learning into an ambiguity estimation framework, tailored to adaptive objectives for individual points based on ambiguity levels. As a result, our method promotes model training, which ensures the correctness of low-ambiguity points while allowing mistakes for high-ambiguity points. As ambiguities are formulated based on position discrepancies across labels, optimization during inference is constrained by the assumption that all unlabeled points are uniformly unambiguous, lacking ambiguity awareness. Inspired by the insight of joint training, we further propose AMContrast3D++ integrating with two branches trained in parallel, where a novel ambiguity prediction module concurrently learns point ambiguities from generated embeddings. To this end, we design a masked refinement mechanism that leverages predicted ambiguities to enable the ambiguous embeddings to be more reliable, thereby boosting segmentation performance and enhancing robustness. Experimental results on 3D indoor scene datasets, S3DIS and ScanNet, demonstrate the effectiveness of the proposed method. Code is available at https://github.com/YangChenApril/AMContrast3D.
Related papers
- Unsupervised Domain Adaptation for 3D LiDAR Semantic Segmentation Using Contrastive Learning and Multi-Model Pseudo Labeling [0.7373617024876725]
Unsupervised contrastive learning at the segment level is used to pre-train a backbone network.<n>A multi-model pseudo-labeling strategy is introduced, utilizing an ensemble of diverse state-of-the-art architectures.<n>Experiments adapting from Semantic KITTI to unlabeled target datasets demonstrate significant improvements in segmentation accuracy.
arXiv Detail & Related papers (2025-07-24T08:21:43Z) - High-quality Pseudo-labeling for Point Cloud Segmentation with Scene-level Annotation [32.03087826213936]
This paper investigates indoor point cloud semantic segmentation under scene-level annotation.<n>Current methods first generate point-level pseudo-labels, which are then used to train segmentation models.<n>To enhance accuracy, this paper proposes a high-quality pseudo-label generation framework.
arXiv Detail & Related papers (2025-06-29T13:17:12Z) - Adaptive Margin Contrastive Learning for Ambiguity-aware 3D Semantic Segmentation [25.29651362098539]
We propose an adaptive margin contrastive learning method for 3D point cloud semantic segmentation, namely AMContrast3D.<n>We design adaptive objectives for individual points based on their ambiguity levels, aiming to ensure the correctness of low-ambiguity points while allowing mistakes for high-ambiguity points.<n> Experimental results on large-scale datasets, S3DIS and ScanNet, demonstrate that our method outperforms state-of-the-art methods.
arXiv Detail & Related papers (2025-02-06T14:39:16Z) - Towards Modality-agnostic Label-efficient Segmentation with Entropy-Regularized Distribution Alignment [62.73503467108322]
This topic is widely studied in 3D point cloud segmentation due to the difficulty of annotating point clouds densely.
Until recently, pseudo-labels have been widely employed to facilitate training with limited ground-truth labels.
Existing pseudo-labeling approaches could suffer heavily from the noises and variations in unlabelled data.
We propose a novel learning strategy to regularize the pseudo-labels generated for training, thus effectively narrowing the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2024-08-29T13:31:15Z) - Revisiting Domain-Adaptive 3D Object Detection by Reliable, Diverse and
Class-balanced Pseudo-Labeling [38.07637524378327]
Unsupervised domain adaptation (DA) with the aid of pseudo labeling techniques has emerged as a crucial approach for domain-adaptive 3D object detection.
Existing DA methods suffer from a substantial drop in performance when applied to a multi-class training setting.
We propose a novel ReDB framework tailored for learning to detect all classes at once.
arXiv Detail & Related papers (2023-07-16T04:34:11Z) - Reliability-Adaptive Consistency Regularization for Weakly-Supervised
Point Cloud Segmentation [80.07161039753043]
Weakly-supervised point cloud segmentation with extremely limited labels is desirable to alleviate the expensive costs of collecting densely annotated 3D points.
This paper explores applying the consistency regularization that is commonly used in weakly-supervised learning, for its point cloud counterpart with multiple data-specific augmentations.
We propose a novel Reliability-Adaptive Consistency Network (RAC-Net) to use both prediction confidence and model uncertainty to measure the reliability of pseudo labels.
arXiv Detail & Related papers (2023-03-09T10:41:57Z) - Data Augmentation-free Unsupervised Learning for 3D Point Cloud
Understanding [61.30276576646909]
We propose an augmentation-free unsupervised approach for point clouds to learn transferable point-level features via soft clustering, named SoftClu.
We exploit the affiliation of points to their clusters as a proxy to enable self-training through a pseudo-label prediction task.
arXiv Detail & Related papers (2022-10-06T10:18:16Z) - Dual Adaptive Transformations for Weakly Supervised Point Cloud
Segmentation [78.6612285236938]
We propose a novel DAT (textbfDual textbfAdaptive textbfTransformations) model for weakly supervised point cloud segmentation.
We evaluate our proposed DAT model with two popular backbones on the large-scale S3DIS and ScanNet-V2 datasets.
arXiv Detail & Related papers (2022-07-19T05:43:14Z) - Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding [62.17020485045456]
It is commonly assumed in semi-supervised learning (SSL) that the unlabeled data are drawn from the same distribution as that of the labeled ones.
We propose to selectively utilize unlabeled data through sample weighting, so that only conducive unlabeled data would be prioritized.
arXiv Detail & Related papers (2022-05-02T16:09:17Z) - Guided Point Contrastive Learning for Semi-supervised Point Cloud
Semantic Segmentation [90.2445084743881]
We present a method for semi-supervised point cloud semantic segmentation to adopt unlabeled point clouds in training to boost the model performance.
Inspired by the recent contrastive loss in self-supervised tasks, we propose the guided point contrastive loss to enhance the feature representation and model generalization ability.
arXiv Detail & Related papers (2021-10-15T16:38:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.