論文の概要: SPRINT: An Assistant for Issue Report Management
- arxiv url: http://arxiv.org/abs/2502.04147v2
- Date: Fri, 07 Feb 2025 09:37:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 11:34:34.425060
- Title: SPRINT: An Assistant for Issue Report Management
- Title(参考訳): SPRINT: 課題報告管理のアシスタント
- Authors: Ahmed Adnan, Antu Saha, Oscar Chaparro,
- Abstract要約: Sprintは、最先端のディープラーニング技術を使用して、イシュー管理タスクを合理化するGitHubアプリケーションである。
Sprintは、新しく報告された問題に似た既存の問題を特定し、問題の深刻度を予測し、問題の解決に修正を必要とする可能性のあるコードファイルを提案する。
スプリントは正確で、有用で、有用であり、問題レポートを管理する開発者を支援する効果の証拠を提供する。
- 参考スコア(独自算出の注目度): 1.9451328614697958
- License:
- Abstract: Managing issue reports is essential for the evolution and maintenance of software systems. However, manual issue management tasks such as triaging, prioritizing, localizing, and resolving issues are highly resource-intensive for projects with large codebases and users. To address this challenge, we present SPRINT, a GitHub application that utilizes state-of-the-art deep learning techniques to streamline issue management tasks. SPRINT assists developers by: (i) identifying existing issues similar to newly reported ones, (ii) predicting issue severity, and (iii) suggesting code files that likely require modification to solve the issues. We evaluated SPRINT using existing datasets and methodologies, measuring its predictive performance, and conducted a user study with five professional developers to assess its usability and usefulness. The results show that SPRINT is accurate, usable, and useful, providing evidence of its effectiveness in assisting developers in managing issue reports. SPRINT is an open-source tool available at https://github.com/sea-lab-wm/sprint_issue_report_assistant_tool.
- Abstract(参考訳): ソフトウェアシステムの進化とメンテナンスには,イシューレポートの管理が不可欠です。
しかし、大規模なコードベースやユーザを持つプロジェクトでは、トリアージ、優先順位付け、ローカライズ、解決といった手動のイシュー管理タスクが非常にリソース集約的です。
この課題に対処するために,最先端のディープラーニング技術を使用して課題管理タスクを効率化するGitHubアプリケーションであるSPRINTを紹介する。
SPRINTは開発者を支援する。
(i)新たに報告された問題と類似した既存の問題を特定すること。
二 問題の深刻さを予知すること、及び
三 問題の解決のために修正を必要とする可能性のあるコードファイルを提案すること。
既存のデータセットと方法論を用いてSPRINTを評価し,その予測性能を測定し,5人のプロ開発者とともにユーザスタディを行い,そのユーザビリティと有用性を評価した。
その結果、SPRINTは正確で有用であり、有用であることを示し、開発者によるイシューレポートの管理を支援する効果の証拠を提供する。
SPRINTはhttps://github.com/sea-lab-wm/sprint_issue_report_assistant_tool.comで公開されているオープンソースツールである。
関連論文リスト
- Enhancing Automated Program Repair with Solution Design [5.547148114448699]
DRCodePilot は GPT-4-Turbo の APR 機能を DR をプロンプト命令に組み込むことで拡張する手法である。
DRCodePilotはGPT-4を直接利用するよりも4.7倍高いフルマッチ比を達成しています。
論文 参考訳(メタデータ) (2024-08-22T01:13:02Z) - Visual Analysis of GitHub Issues to Gain Insights [2.9051263101214566]
本稿では,課題タイムラインに関する洞察を提供するために,可視化を生成するプロトタイプWebアプリケーションを提案する。
問題のライフサイクルに焦点をあて、ユーザによる開発パターンの理解を高めるために重要な情報を記述する。
論文 参考訳(メタデータ) (2024-07-30T15:17:57Z) - MMAU: A Holistic Benchmark of Agent Capabilities Across Diverse Domains [54.117238759317004]
大規模マルチタスクエージェント理解(MMAU)ベンチマークは、複雑な環境設定を必要としない包括的なオフラインタスクを特徴としている。
ツールユース、DAG(Directed Acyclic Graph)QA、データサイエンスと機械学習コーディング、コンテストレベルのプログラミング、数学の5分野にわたるモデルを評価する。
3K以上の異なるプロンプトを含む20の精巧に設計されたタスクにより、MMAUはLLMエージェントの強度と限界を評価するための包括的なフレームワークを提供する。
論文 参考訳(メタデータ) (2024-07-18T00:58:41Z) - How to Understand Whole Software Repository? [64.19431011897515]
リポジトリ全体に対する優れた理解は、自動ソフトウェアエンジニアリング(ASE)への重要な道になるでしょう。
本研究では,リポジトリ全体を包括的に理解するためのエージェントによるRepoUnderstanderという新しい手法を開発した。
リポジトリレベルの知識をより活用するために、エージェントをまとめ、分析し、計画する。
論文 参考訳(メタデータ) (2024-06-03T15:20:06Z) - MaintainoMATE: A GitHub App for Intelligent Automation of Maintenance
Activities [3.2228025627337864]
ソフトウェア開発プロジェクトは、バグ報告や強化要求といったメンテナンスタスクの追跡の中心にある問題追跡システムに依存している。
問題レポートの処理は極めて重要であり、問題レポートに入力されたテキストを徹底的にスキャンする必要があるため、労働集約的な作業となる。
各カテゴリのイシューレポートを自動的に分類し,関連する専門知識を持つ開発者にイシューレポートを割り当てることのできる,MaintainoMATEという統合フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-31T05:15:42Z) - Supporting the Task-driven Skill Identification in Open Source Project
Issue Tracking Systems [0.0]
コントリビュータがコントリビュータのタスクを選択するのを支援するために,オープンイシュー戦略の自動ラベル付けについて検討する。
スキルを特定することで、コントリビュータ候補はより適切なタスクを選択するべきだ、と私たちは主張する。
本研究では,実験におけるラベルの関連性を定量的に分析し,戦略の相対的重要性を比較した。
論文 参考訳(メタデータ) (2022-11-02T14:17:22Z) - Task Compass: Scaling Multi-task Pre-training with Task Prefix [122.49242976184617]
既存の研究では、大規模教師付きタスクによるマルチタスク学習がタスク間の負の効果に悩まされていることが示されている。
タスク間の関係を探索するために,タスクプレフィックスガイド付きマルチタスク事前学習フレームワークを提案する。
我々のモデルは、幅広いタスクの強力な基盤バックボーンとして機能するだけでなく、タスク関係を分析するための探索ツールとしても実現可能である。
論文 参考訳(メタデータ) (2022-10-12T15:02:04Z) - Predicting Issue Types on GitHub [8.791809365994682]
Ticket Taggerは、機械学習技術による課題のタイトルと説明を分析するGitHubアプリである。
私たちは、約30,000のGitHubイシューに対して、ツールの予測パフォーマンスを実証的に評価しました。
論文 参考訳(メタデータ) (2021-07-21T08:14:48Z) - GeoQA: A Geometric Question Answering Benchmark Towards Multimodal
Numerical Reasoning [172.36214872466707]
我々は、テキスト記述、視覚図、定理知識の包括的理解を必要とする幾何学的問題を解くことに注力する。
そこで本研究では,5,010の幾何学的問題を含む幾何学的質問応答データセットGeoQAを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:34:17Z) - S3M: Siamese Stack (Trace) Similarity Measure [55.58269472099399]
本稿では、深層学習に基づくスタックトレースの類似性を計算する最初のアプローチであるS3Mを紹介します。
BiLSTMエンコーダと、類似性を計算するための完全接続型分類器をベースとしている。
私たちの実験は、オープンソースデータとプライベートなJetBrainsデータセットの両方において、最先端のアプローチの優位性を示しています。
論文 参考訳(メタデータ) (2021-03-18T21:10:41Z) - Exploring and Predicting Transferability across NLP Tasks [115.6278033699853]
本研究では,33のNLPタスク間の伝達可能性について検討した。
以上の結果から,転帰学習は従来考えられていたよりも有益であることが示唆された。
また,特定の対象タスクに対して最も転送可能なソースタスクを予測するために使用できるタスク埋め込みも開発した。
論文 参考訳(メタデータ) (2020-05-02T09:39:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。