Safeguarding connected autonomous vehicle communication: Protocols, intra- and inter-vehicular attacks and defenses
- URL: http://arxiv.org/abs/2502.04201v1
- Date: Thu, 06 Feb 2025 16:43:23 GMT
- Title: Safeguarding connected autonomous vehicle communication: Protocols, intra- and inter-vehicular attacks and defenses
- Authors: Mohammed Aledhari, Rehma Razzak, Mohamed Rahouti, Abbas Yazdinejad, Reza M. Parizi, Basheer Qolomany, Mohsen Guizani, Junaid Qadir, Ala Al-Fuqaha,
- Abstract summary: This paper contributes by presenting a detailed analysis of existing security frameworks and protocols.
We propose a set of best practices for enhancing CAV communication security.
Key contributions include the development of a new classification system for CAV security threats.
- Score: 30.18378702161015
- License:
- Abstract: The advancements in autonomous driving technology, coupled with the growing interest from automotive manufacturers and tech companies, suggest a rising adoption of Connected Autonomous Vehicles (CAVs) in the near future. Despite some evidence of higher accident rates in AVs, these incidents tend to result in less severe injuries compared to traditional vehicles due to cooperative safety measures. However, the increased complexity of CAV systems exposes them to significant security vulnerabilities, potentially compromising their performance and communication integrity. This paper contributes by presenting a detailed analysis of existing security frameworks and protocols, focusing on intra- and inter-vehicle communications. We systematically evaluate the effectiveness of these frameworks in addressing known vulnerabilities and propose a set of best practices for enhancing CAV communication security. The paper also provides a comprehensive taxonomy of attack vectors in CAV ecosystems and suggests future research directions for designing more robust security mechanisms. Our key contributions include the development of a new classification system for CAV security threats, the proposal of practical security protocols, and the introduction of use cases that demonstrate how these protocols can be integrated into real-world CAV applications. These insights are crucial for advancing secure CAV adoption and ensuring the safe integration of autonomous vehicles into intelligent transportation systems.
Related papers
- Collaborative Approaches to Enhancing Smart Vehicle Cybersecurity by AI-Driven Threat Detection [0.0]
The automotive industry increasingly adopts connected and automated vehicles (CAVs)
With the emergence of new vulnerabilities and security requirements, the integration of advanced technologies presents promising avenues for enhancing CAV cybersecurity.
The roadmap for cybersecurity in autonomous vehicles emphasizes the importance of efficient intrusion detection systems and AI-based techniques.
arXiv Detail & Related papers (2024-12-31T04:08:42Z) - VMGuard: Reputation-Based Incentive Mechanism for Poisoning Attack Detection in Vehicular Metaverse [52.57251742991769]
vehicular Metaverse guard (VMGuard) protects vehicular Metaverse systems from data poisoning attacks.
VMGuard implements a reputation-based incentive mechanism to assess the trustworthiness of participating SIoT devices.
Our system ensures that reliable SIoT devices, previously missclassified, are not barred from participating in future rounds of the market.
arXiv Detail & Related papers (2024-12-05T17:08:20Z) - Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
We propose Authenticated Cyclic Redundancy Integrity Check (ACRIC)
ACRIC preserves backward compatibility without requiring additional hardware and is protocol agnostic.
We show that ACRIC offers robust security with minimal transmission overhead ( 1 ms)
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - Survey on Security Attacks in Connected and Autonomous Vehicular Systems [0.0]
This study provides a brief review of the state of cyber security in the CAVs environment.
It categorizes the multiple cybersecurity threats and weaknesses in the context of CAVs into three groups: attacks on the vehicles network, attacks on the Internet at large, and other attacks.
It details the most uptodate defense tactics for securing CAVs and analyzes how effective they are.
arXiv Detail & Related papers (2023-10-14T06:37:05Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
This paper presents a data-driven framework for assessing the risk of different AVs' behaviors.
We propose the notion of counterfactual safety margin, which represents the minimum deviation from nominal behavior that could cause a collision.
arXiv Detail & Related papers (2023-08-02T09:48:08Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
Connected and autonomous vehicles (CAVs) can reduce human errors in traffic accidents, increase road efficiency, and execute various tasks. Reaping these benefits requires CAVs to autonomously navigate to target destinations.
This article proposes solutions using the convergence of communication theory, control theory, and machine learning to enable effective and secure CAV navigation.
arXiv Detail & Related papers (2023-07-05T21:38:36Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
We develop two lightweight driver authentication systems based on Random Forest and Recurrent Neural Network architectures.
We are the first to propose attacks against these systems by developing two novel evasion attacks, SMARTCAN and GANCAN.
Through our contributions, we aid practitioners in safely adopting these systems, help reduce car thefts, and enhance driver security.
arXiv Detail & Related papers (2023-06-09T14:33:26Z) - Spatial-Temporal-Aware Safe Multi-Agent Reinforcement Learning of
Connected Autonomous Vehicles in Challenging Scenarios [10.37986799561165]
Communication technologies enable coordination among connected and autonomous vehicles (CAVs)
We propose a framework of constrained multi-agent reinforcement learning (MARL) with a parallel safety shield for CAVs.
Results show that our proposed methodology significantly increases system safety and efficiency in challenging scenarios.
arXiv Detail & Related papers (2022-10-05T14:39:07Z) - Smart and Secure CAV Networks Empowered by AI-Enabled Blockchain: Next
Frontier for Intelligent Safe-Driving Assessment [17.926728975133113]
Securing a safe-driving circumstance for connected and autonomous vehicles (CAVs) continues to be a widespread concern.
We propose a novel framework of algorithm-enabled intElligent Safe-driving assessmenT (BEST) to offer a smart and reliable approach.
arXiv Detail & Related papers (2021-04-09T19:08:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.