論文の概要: GUIWatcher: Automatically Detecting GUI Lags by Analyzing Mobile Application Screencasts
- arxiv url: http://arxiv.org/abs/2502.04202v1
- Date: Thu, 06 Feb 2025 16:43:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:33:36.642692
- Title: GUIWatcher: Automatically Detecting GUI Lags by Analyzing Mobile Application Screencasts
- Title(参考訳): GUIWatcher: モバイルアプリケーションのスクリーンキャスト分析によるGUIラグの自動検出
- Authors: Wei Liu, Feng Lin, Linqiang Guo, Tse-Hsun Chen, Ahmed E. Hassan,
- Abstract要約: グラフィカルユーザインタフェース(GUI)はモバイルアプリケーションにおいて中心的な役割を果たし、ユーザビリティとユーザ満足度に直接影響を与えます。
遅延や応答性の低いGUIパフォーマンスは、ネガティブなユーザエクスペリエンスとモバイルアプリケーション(アプリ)レーティングの低下につながる可能性がある。
GUIWatcherは,モバイルアプリのテスト中に記録されたスクリーンキャストを分析し,GUIラグを検出するように設計されたフレームワークである。
- 参考スコア(独自算出の注目度): 9.997570370503617
- License:
- Abstract: The Graphical User Interface (GUI) plays a central role in mobile applications, directly affecting usability and user satisfaction. Poor GUI performance, such as lag or unresponsiveness, can lead to negative user experience and decreased mobile application (app) ratings. In this paper, we present GUIWatcher, a framework designed to detect GUI lags by analyzing screencasts recorded during mobile app testing. GUIWatcher uses computer vision techniques to identify three types of lag-inducing frames (i.e., janky frames, long loading frames, and frozen frames) and prioritizes the most severe ones that significantly impact user experience. Our approach was evaluated using real-world mobile application tests, achieving high accuracy in detecting GUI lags in screencasts, with an average precision of 0.91 and recall of 0.96. The comprehensive bug reports generated from the lags detected by GUIWatcher help developers focus on the more critical issues and debug them efficiently. Additionally, GUIWatcher has been deployed in a real-world production environment, continuously monitoring app performance and successfully identifying critical GUI performance issues. By offering a practical solution for identifying and addressing GUI lags, GUIWatcher contributes to enhancing user satisfaction and the overall quality of mobile apps.
- Abstract(参考訳): グラフィカルユーザインタフェース(GUI)はモバイルアプリケーションにおいて中心的な役割を果たし、ユーザビリティとユーザ満足度に直接影響を与えます。
遅延や応答性の低いGUIパフォーマンスは、ネガティブなユーザエクスペリエンスとモバイルアプリケーション(アプリ)レーティングの低下につながる可能性がある。
本稿では,モバイルアプリケーションのテスト中に記録されたスクリーンキャストを分析し,GUIラグを検出するためのGUIWatcherを提案する。
GUIWatcherはコンピュータビジョン技術を用いて、3種類のラグを誘発するフレーム(例えば、不規則なフレーム、長いローディングフレーム、凍結フレーム)を識別し、ユーザエクスペリエンスに大きな影響を与える最も重いフレームを優先順位付けする。
提案手法は実世界のモバイルアプリケーションテストを用いて評価され,スクリーンキャストにおけるGUIラグ検出の精度が高く,平均精度は0.91,リコール率は0.96であった。
GUIWatcherが検出したラグから生成された包括的なバグレポートは、開発者がより重大な問題に集中し、それらを効率的にデバッグするのに役立つ。
さらに、GUIWatcherは実際の運用環境にデプロイされ、アプリケーションのパフォーマンスを継続的に監視し、重要なGUIパフォーマンス問題の特定に成功した。
GUIラグを特定し、対処するための実用的なソリューションを提供することで、GUIWatcherは、ユーザの満足度とモバイルアプリ全体の品質の向上に貢献します。
関連論文リスト
- WorldGUI: Dynamic Testing for Comprehensive Desktop GUI Automation [20.11855701656702]
We present WorldGUI, a novel GUI benchmark that design GUI task with various initial state tosimulated real computer-user interaction。
また,GUIインタラクションの予測不能性と複雑性を効果的に管理する総合的なフレームワークであるGUI-Thinkerを提案する。
論文 参考訳(メタデータ) (2025-02-12T01:06:10Z) - GUI-Bee: Align GUI Action Grounding to Novel Environments via Autonomous Exploration [56.58744345634623]
MLLMをベースとした自律エージェントGUI-Beeを提案する。
NovelScreenSpotも導入しています。これはGUIアクショングラウンドモデルと新しい環境との整合性をテストするためのベンチマークです。
論文 参考訳(メタデータ) (2025-01-23T18:16:21Z) - UI-TARS: Pioneering Automated GUI Interaction with Native Agents [58.18100825673032]
本稿では,GUIエージェントのネイティブモデルであるUI-TARSを紹介する。
OSWorldベンチマークでは、UI-TARSはスコアが24.6、50ステップが22.7、15ステップが22.7でクロード(それぞれ22.0と14.9)を上回っている。
論文 参考訳(メタデータ) (2025-01-21T17:48:10Z) - Zero-Shot Prompting Approaches for LLM-based Graphical User Interface Generation [53.1000575179389]
LLMに基づくGUI検索とフィルタリング機構を統合した検索型GUI生成(RAGG)手法を提案する。
また,GUI 生成に Prompt Decomposition (PDGG) と Self-Critique (SCGG) を適用した。
UI/UX経験を持つ100人以上の集団作業者の3000以上のGUIアノテーションを対象とし,SPGGはPDGGやRAGGとは対照的に,より効果的なGUI生成につながる可能性が示唆された。
論文 参考訳(メタデータ) (2024-12-15T22:17:30Z) - Falcon-UI: Understanding GUI Before Following User Instructions [57.67308498231232]
インテリジェンスフリーなGUIナビゲーションデータセットであるInsight-UIデータセットを導入し、GUI環境のモデル理解を強化する。
Insight-UIデータセットはCommon Crawlコーパスから自動的に生成され、さまざまなプラットフォームをシミュレートする。
我々は、最初Insight-UIデータセットで事前訓練され、その後AndroidおよびWeb GUIデータセットで微調整されたGUIエージェントモデルFalcon-UIを開発した。
論文 参考訳(メタデータ) (2024-12-12T15:29:36Z) - GUICourse: From General Vision Language Models to Versatile GUI Agents [75.5150601913659]
GUICourseは、ビジュアルベースのGUIエージェントをトレーニングするためのデータセットスイートです。
まず、OCRとVLMのグラウンド機能を強化するためにGUIEnvデータセットを導入する。
次にGUIActとGUIChatデータセットを導入し、GUIコンポーネントやインタラクションに関する知識を充実させます。
論文 参考訳(メタデータ) (2024-06-17T08:30:55Z) - GUI-WORLD: A Dataset for GUI-oriented Multimodal LLM-based Agents [73.9254861755974]
本稿では,人間のMLLMアノテーションを巧みに作成するGUI-Worldという新しいデータセットを提案する。
各種GUIコンテンツの理解において,ImageLLMs や VideoLLMs などの最先端MLLMの能力を評価する。
論文 参考訳(メタデータ) (2024-06-16T06:56:53Z) - SeeClick: Harnessing GUI Grounding for Advanced Visual GUI Agents [17.43878828389188]
タスク自動化のためのスクリーンショットのみに依存する新しいビジュアルグラフィカルユーザインタフェース(GUI)エージェントであるSeeClickを提案する。
この課題に対処するため,GUIグラウンディングによるSeeClickの改良を提案し,GUIグラウンディングデータのキュレーションを自動化する手法を考案した。
また、モバイル、デスクトップ、Web環境を含む初めての現実的なGUIグラウンドティングベンチマークであるScreenSpotも作成しました。
論文 参考訳(メタデータ) (2024-01-17T08:10:35Z) - Vision-Based Mobile App GUI Testing: A Survey [29.042723121518765]
ビジョンベースのモバイルアプリ GUI テストアプローチは、コンピュータビジョン技術の開発とともに現れた。
本稿では,271論文における最新技術に関する包括的調査を行い,92論文は視覚に基づく研究である。
論文 参考訳(メタデータ) (2023-10-20T14:04:04Z) - NiCro: Purely Vision-based, Non-intrusive Cross-Device and
Cross-Platform GUI Testing [19.462053492572142]
我々は,非侵入型クロスデバイス・クロスプラットフォームシステムNiCroを提案する。
NiCroは最先端のGUIウィジェット検出器を使用してGUIイメージからウィジェットを検出し、さまざまなデバイスにまたがるウィジェットにマッチする一連の包括的な情報を分析する。
システムレベルでは、NiCroは仮想デバイスファームとロボットアームシステムと対話して、非侵襲的にクロスデバイスでクロスプラットフォームなテストを実行することができる。
論文 参考訳(メタデータ) (2023-05-24T01:19:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。