論文の概要: Vision-Based Mobile App GUI Testing: A Survey
- arxiv url: http://arxiv.org/abs/2310.13518v2
- Date: Wed, 23 Oct 2024 02:48:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:53:26.158168
- Title: Vision-Based Mobile App GUI Testing: A Survey
- Title(参考訳): ビジョンベースのモバイルアプリGUIテスト:サーベイ
- Authors: Shengcheng Yu, Chunrong Fang, Ziyuan Tuo, Quanjun Zhang, Chunyang Chen, Zhenyu Chen, Zhendong Su,
- Abstract要約: ビジョンベースのモバイルアプリ GUI テストアプローチは、コンピュータビジョン技術の開発とともに現れた。
本稿では,271論文における最新技術に関する包括的調査を行い,92論文は視覚に基づく研究である。
- 参考スコア(独自算出の注目度): 29.042723121518765
- License:
- Abstract: Graphical User Interface (GUI) has become one of the most significant parts of mobile applications (apps). It is a direct bridge between mobile apps and end users, which directly affects the end user's experience. Neglecting GUI quality can undermine the value and effectiveness of the entire mobile app solution. Significant research efforts have been devoted to GUI testing, one effective method to ensure mobile app quality. By conducting rigorous GUI testing, developers can ensure that the visual and interactive elements of the mobile apps not only meet functional requirements but also provide a seamless and user-friendly experience. However, traditional solutions, relying on the source code or layout files, have met challenges in both effectiveness and efficiency due to the gap between what is obtained and what app GUI actually presents. Vision-based mobile app GUI testing approaches emerged with the development of computer vision technologies and have achieved promising progress. In this survey paper, we provide a comprehensive investigation of the state-of-the-art techniques on 271 papers, among which 92 are vision-based studies. This survey covers different topics of GUI testing, like GUI test generation, GUI test record & replay, GUI testing framework, etc. Specifically, the research emphasis of this survey is placed mostly on how vision-based techniques outperform traditional solutions and have gradually taken a vital place in the GUI testing field. Based on the investigation of existing studies, we outline the challenges and opportunities of (vision-based) mobile app GUI testing and propose promising research directions with the combination of emerging techniques.
- Abstract(参考訳): グラフィカルユーザインタフェース(GUI)は、モバイルアプリケーション(アプリ)において最も重要な部分のひとつになっている。
モバイルアプリとエンドユーザの直接的なブリッジであり、エンドユーザのエクスペリエンスに直接影響を与えます。
GUI品質の無視は、モバイルアプリ全体の価値と効果を損なう可能性がある。
モバイルアプリの品質を確保するための有効な方法のひとつとして,GUIテストに多大な研究努力が注がれている。
厳格なGUIテストを実行することで、開発者はモバイルアプリの視覚的およびインタラクティブな要素が機能要件を満たすだけでなく、シームレスでユーザフレンドリなエクスペリエンスを提供することができる。
しかし、ソースコードやレイアウトファイルに依存する従来のソリューションは、取得したものと実際のアプリGUIとのギャップにより、有効性と効率の両面での課題に直面している。
ビジョンベースのモバイルアプリGUIテストアプローチは、コンピュータビジョン技術の発展とともに現れ、有望な進歩を遂げた。
本稿では,271論文における最新技術に関する包括的調査を行い,92論文が視覚に基づく研究であることを示す。
この調査では、GUIテスト生成、GUIテストレコードとリプレイ、GUIテストフレームワークなど、GUIテストのさまざまなトピックについて取り上げている。
特に、この調査の重点は、視覚ベースの技術が従来のソリューションよりも優れており、GUIテスト分野において徐々に重要な役割を担っている。
本研究は,既存研究をベースとして,(ビジョンベース)モバイルアプリGUIテストの課題と機会を概説し,新たな技術の組み合わせによる将来的な研究方向性を提案する。
関連論文リスト
- GUICourse: From General Vision Language Models to Versatile GUI Agents [75.5150601913659]
GUICourseは、ビジュアルベースのGUIエージェントをトレーニングするためのデータセットスイートです。
まず、OCRとVLMのグラウンド機能を強化するためにGUIEnvデータセットを導入する。
次にGUIActとGUIChatデータセットを導入し、GUIコンポーネントやインタラクションに関する知識を充実させます。
論文 参考訳(メタデータ) (2024-06-17T08:30:55Z) - GUI-WORLD: A Dataset for GUI-oriented Multimodal LLM-based Agents [73.9254861755974]
本稿では,人間のMLLMアノテーションを巧みに作成するGUI-Worldという新しいデータセットを提案する。
各種GUIコンテンツの理解において,ImageLLMs や VideoLLMs などの最先端MLLMの能力を評価する。
論文 参考訳(メタデータ) (2024-06-16T06:56:53Z) - VideoGUI: A Benchmark for GUI Automation from Instructional Videos [78.97292966276706]
VideoGUIは、ビジュアル中心のGUIタスクでGUIアシスタントを評価するために設計された、新しいマルチモーダルベンチマークである。
高品質なWebインストラクショナルビデオから得られたベンチマークは、プロフェッショナルと新しいソフトウェアに関わるタスクに焦点を当てている。
評価の結果,SoTAの大規模マルチモーダルモデルであるGPT4oでさえ,視覚中心のGUIタスクでは不十分であることが判明した。
論文 参考訳(メタデータ) (2024-06-14T17:59:08Z) - Interlinking User Stories and GUI Prototyping: A Semi-Automatic LLM-based Approach [55.762798168494726]
グラフィカルユーザインタフェース(GUI)のプロトタイプにおいて,機能的NLベースの要求の実装を検証するための新しい言語モデル(LLM)ベースのアプローチを提案する。
提案手法は,GUIプロトタイプに実装されていない機能的ユーザストーリの検出と,要件を直接実装する適切なGUIコンポーネントのレコメンデーションを提供することを目的としている。
論文 参考訳(メタデータ) (2024-06-12T11:59:26Z) - Tell Me What's Next: Textual Foresight for Generic UI Representations [65.10591722192609]
We propose Textual Foresight, a novel pretraining objective for learn UI screen representations。
Textual Foresightは、現在のUIとローカルアクションを考慮すれば、将来のUI状態のグローバルなテキスト記述を生成する。
新たに構築したモバイルアプリデータセットであるOpenAppでトレーニングを行い、アプリUI表現学習のための最初の公開データセットを作成しました。
論文 参考訳(メタデータ) (2024-06-12T02:43:19Z) - GUing: A Mobile GUI Search Engine using a Vision-Language Model [6.024602799136753]
本稿ではGUIClipと呼ばれる視覚言語モデルに基づくGUI検索エンジンGUingを提案する。
われわれは最初にGoogle Playアプリの紹介画像から収集し、最も代表的なスクリーンショットを表示する。
そこで我々は,これらの画像からキャプションを分類し,収穫し,抽出する自動パイプラインを開発した。
私たちはこのデータセットを使って新しい視覚言語モデルをトレーニングしました。
論文 参考訳(メタデータ) (2024-04-30T18:42:18Z) - Gamified GUI testing with Selenium in the IntelliJ IDE: A Prototype Plugin [0.559239450391449]
本稿では,IntelliJ IDEA用のガミフィケーションプラグインのプロトタイプであるGIPGUTについて述べる。
このプラグインは、達成、報酬、プロファイルのカスタマイズを通じて、単調で退屈なタスクにテスタのエンゲージメントを高める。
その結果,ゲーミフィケーション要素の高利用性と肯定的な受容性が示唆された。
論文 参考訳(メタデータ) (2024-03-14T20:11:11Z) - Effective, Platform-Independent GUI Testing via Image Embedding and Reinforcement Learning [15.458315113767686]
アプリケーションテストに有効なプラットフォームに依存しないアプローチであるPIRLTestを提案する。
コンピュータビジョンと強化学習技術を利用して、新しいシナジスティックな方法で自動テストを行う。
PILTestは、Q-networkを使用して特定の状態-アクションペアの値を見積もる好奇心駆動型戦略のガイダンスで、アプリを探索する。
論文 参考訳(メタデータ) (2022-08-19T01:51:16Z) - Towards Informed Design and Validation Assistance in Computer Games
Using Imitation Learning [65.12226891589592]
本稿では,自動ゲーム検証とテストのための新しいアプローチを提案する。
本手法は,データ駆動型模倣学習技術を活用し,時間と労力をほとんど必要とせず,機械学習やプログラミングの知識も必要としない。
論文 参考訳(メタデータ) (2022-08-15T11:08:44Z) - Object Detection for Graphical User Interface: Old Fashioned or Deep
Learning or a Combination? [21.91118062303175]
我々は,50k以上のGUI画像上で7つの代表的GUI要素検出手法について,大規模な実証的研究を行った。
本研究は、解決すべき技術的課題に光を当て、新しいGUI要素検出手法の設計について報告する。
25,000個のGUI画像に対する評価は,GUI要素検出における最先端性能を著しく向上させることを示す。
論文 参考訳(メタデータ) (2020-08-12T06:36:33Z) - Applied Awareness: Test-Driven GUI Development using Computer Vision and
Cryptography [0.0]
テスト駆動開発は非現実的であり、一般的には、黄金の画像を生成したり、インタラクティブなテストシナリオを構築するためにGUIの初期実装を必要とします。
バックエンド通信の観点でGUIプレゼンテーションを解釈する,新しいかつ即時適用可能な手法を実証する。
このバックエンド通信は、プラットフォームに依存したUIアベイランスやアクセシビリティ機能に依存する典型的なテスト方法論の欠陥を回避する。
論文 参考訳(メタデータ) (2020-06-05T22:46:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。