論文の概要: Can LLMs Hack Enterprise Networks? Autonomous Assumed Breach Penetration-Testing Active Directory Networks
- arxiv url: http://arxiv.org/abs/2502.04227v1
- Date: Thu, 06 Feb 2025 17:12:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:29:16.016470
- Title: Can LLMs Hack Enterprise Networks? Autonomous Assumed Breach Penetration-Testing Active Directory Networks
- Title(参考訳): LLMsはエンタープライズネットワークをハックできるか? 自律的に侵入テストを行うアクティブディレクトリネットワーク
- Authors: Andreas Happe, Jürgen Cito,
- Abstract要約: 我々は,LLM(Large Language Models)によって駆動される新しいプロトタイプを紹介し,実生活におけるActive Directoryテストベッド内のアカウントを妥協する。
プロトタイプのソースコード、トレース、分析されたログは、集団サイバーセキュリティを強化するためにオープンソースとしてリリースされている。
- 参考スコア(独自算出の注目度): 3.11537581064266
- License:
- Abstract: We explore the feasibility and effectiveness of using LLM-driven autonomous systems for Assumed Breach penetration testing in enterprise networks. We introduce a novel prototype that, driven by Large Language Models (LLMs), can compromise accounts within a real-life Active Directory testbed. Our research provides a comprehensive evaluation of the prototype's capabilities, and highlights both strengths and limitations while executing attack. The evaluation uses a realistic simulation environment (Game of Active Directory, GOAD) to capture intricate interactions, stochastic outcomes, and timing dependencies that characterize live network scenarios. The study concludes that autonomous LLMs are able to conduct Assumed Breach simulations, potentially democratizing access to penetration testing for organizations facing budgetary constraints. The prototype's source code, traces, and analyzed logs are released as open-source to enhance collective cybersecurity and facilitate future research in LLM-driven cybersecurity automation.
- Abstract(参考訳): 本研究では,LLM駆動型自律システムによる企業ネットワークにおける推定ブレハ浸透試験の実現可能性と有効性について検討する。
我々は,LLM(Large Language Models)によって駆動される新しいプロトタイプを紹介し,実生活におけるActive Directoryテストベッド内のアカウントを妥協する。
我々の研究は、プロトタイプの能力を総合的に評価し、攻撃実行時の強度と限界の両方を強調します。
この評価では,現実的なシミュレーション環境(GOAD,Game of Active Directory)を用いて,複雑なインタラクション,確率的結果,およびライブネットワークシナリオを特徴付けるタイミング依存性をキャプチャする。
この研究は、自律型LLMは、予算的な制約に直面している組織に対して、侵入テストへのアクセスを民主化する、仮定されたブレッハシミュレーションを実行することができると結論付けている。
プロトタイプのソースコード、トレース、分析されたログは、集団サイバーセキュリティを強化し、LLM駆動サイバーセキュリティ自動化における将来の研究を促進するために、オープンソースとしてリリースされている。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - Risk-Aware Driving Scenario Analysis with Large Language Models [7.093690352605479]
大規模言語モデル(LLM)は、微妙な文脈関係、推論、複雑な問題解決を捉えることができる。
本稿では, LLM を利用して生成した運転シナリオのリスク認識分析を行う新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-04T09:19:13Z) - AutoPT: How Far Are We from the End2End Automated Web Penetration Testing? [54.65079443902714]
LLMによって駆動されるPSMの原理に基づく自動浸透試験エージェントであるAutoPTを紹介する。
以上の結果から, AutoPT は GPT-4o ミニモデル上でのベースラインフレームワーク ReAct よりも優れていた。
論文 参考訳(メタデータ) (2024-11-02T13:24:30Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
大規模言語モデル(LLM)とその関連技術は、特に迅速な工学とエージェント工学の領域において進歩している。
提案するフレームワークは、検索拡張生成(RAG)を組み込んで、ドメイン固有の知識を取得してソリューションを生成するシステムの能力を高める。
論文 参考訳(メタデータ) (2024-08-07T08:43:32Z) - ROS-LLM: A ROS framework for embodied AI with task feedback and structured reasoning [74.58666091522198]
非専門家による直感的なロボットプログラミングのためのフレームワークを提案する。
ロボットオペレーティングシステム(ROS)からの自然言語のプロンプトと文脈情報を活用する
我々のシステムは,大規模言語モデル (LLM) を統合し,非専門家がチャットインタフェースを通じてシステムにタスク要求を記述できるようにする。
論文 参考訳(メタデータ) (2024-06-28T08:28:38Z) - Generative AI-in-the-loop: Integrating LLMs and GPTs into the Next Generation Networks [11.509880721677156]
大規模言語モデル(LLM)が最近登場し、認知タスクにおけるほぼ人間レベルのパフォーマンスを実証している。
次世代AI-in-the-loop」の概念を提案する。
LLMとMLモデルを組み合わせることで、それぞれの能力を活用し、どちらのモデルよりも優れた結果が得られると考えています。
論文 参考訳(メタデータ) (2024-06-06T17:25:07Z) - Can LLMs Understand Computer Networks? Towards a Virtual System Administrator [15.469010487781931]
本稿では,大規模言語モデルによるコンピュータネットワークの理解に関する総合的研究を初めて行った。
我々は,プロプライエタリ(GPT4)とオープンソース(Llama2)モデルを用いたマルチコンピュータネットワーク上でのフレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-04-19T07:41:54Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - Getting pwn'd by AI: Penetration Testing with Large Language Models [0.0]
本稿では,GPT3.5のような大規模言語モデルによるAIスパーリングパートナーによる浸透テストの強化の可能性について検討する。
セキュリティテストの課題のためのハイレベルなタスクプランニングと、脆弱な仮想マシン内での低レベルな脆弱性ハンティングである。
論文 参考訳(メタデータ) (2023-07-24T19:59:22Z) - Automatic Perturbation Analysis for Scalable Certified Robustness and
Beyond [171.07853346630057]
ニューラルネットワークに対する線形緩和に基づく摂動解析(LiRPA)は、堅牢性検証と認証防御のコアコンポーネントとなっている。
我々は任意のニューラルネットワーク構造上で摂動解析を可能にするための自動フレームワークを開発する。
我々は、Tiny ImageNetとDownscaled ImageNetのLiRPAベースの認証防御を実証する。
論文 参考訳(メタデータ) (2020-02-28T18:47:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。