論文の概要: Large Language Models powered Network Attack Detection: Architecture, Opportunities and Case Study
- arxiv url: http://arxiv.org/abs/2503.18487v1
- Date: Mon, 24 Mar 2025 09:40:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:31:10.530259
- Title: Large Language Models powered Network Attack Detection: Architecture, Opportunities and Case Study
- Title(参考訳): 大規模言語モデルを用いたネットワーク攻撃検出:アーキテクチャ,機会,事例研究
- Authors: Xinggong Zhang, Qingyang Li, Yunpeng Tan, Zongming Guo, Lei Zhang, Yong Cui,
- Abstract要約: 大規模言語モデル(LLM)は膨大なテキストコーパスで訓練される。
これにより、ネットワークの脅威検出のための新しい扉が開かれた。
本稿では,LLMを用いたDDoS検出の設計を事例として紹介する。
- 参考スコア(独自算出の注目度): 26.966976709473226
- License:
- Abstract: Network attack detection is a pivotal technology to identify network anomaly and classify malicious traffic. Large Language Models (LLMs) are trained on a vast corpus of text, have amassed remarkable capabilities of context-understanding and commonsense knowledge. This has opened up a new door for network threat detection. Researchers have already initiated discussions regarding the application of LLMs on specific cyber-security tasks. Unfortunately, there is still a lack of comprehensive elaboration how to mine LLMs' potentials in network threat detections, as well as the opportunities and challenges. In this paper, we mainly focus on the classification of malicious traffic from the perspective of LLMs' capability. We present a holistic view of the architecture of LLM-powered network attack detection, including Pre-training, Fine-tuning, and Detection. Especially, by exploring the knowledge and capabilities of LLM, we identify three distinct roles LLM can act in network attack detection: \textit{Classifier, Encoder, and Predictor}. For each of them, the modeling paradigm, opportunities and challenges are elaborated. Finally, we present our design on LLM-powered DDoS detection as a case study. The proposed framework attains accurate detection on carpet bombing DDoS by exploiting LLMs' capabilities in contextual mining. The evaluation shows its efficacy, exhibiting a nearly $35$\% improvement compared to existing systems.
- Abstract(参考訳): ネットワーク攻撃検出は、ネットワーク異常を特定し、悪意のあるトラフィックを分類する重要な技術である。
大規模言語モデル(LLM)は、膨大なテキストコーパスに基づいて訓練されており、コンテキスト理解と常識知識の顕著な能力を誇っている。
これにより、ネットワークの脅威検出のための新しい扉が開かれた。
研究者はすでに、特定のサイバーセキュリティタスクにLLMを適用することについての議論を始めている。
残念なことに、ネットワークの脅威検出や機会や課題においてLLMのポテンシャルをマイニングする方法は、いまだに包括的に検討されていない。
本稿では,LSMの能力の観点から,主に悪意のあるトラフィックの分類に焦点をあてる。
本稿では,LLMによるネットワーク攻撃検知のアーキテクチャを概観し,事前学習,ファインチューニング,検出を行う。
特に, LLMの知識と能力を探ることで, LLMがネットワーク攻撃検出において果たす役割を3つ特定する: \textit{Classifier, Encoder, Predictor}。
それぞれについて、モデリングパラダイム、機会、課題が詳しく述べられている。
最後に,LLMを用いたDDoS検出をケーススタディとして提案する。
提案するフレームワークは,LLMのコンテキストマイニング能力を利用して,カーペット爆弾DDoSの正確な検出を実現する。
この評価は効果を示し、既存のシステムに比べて35ドル近く改善されている。
関連論文リスト
- Attention Tracker: Detecting Prompt Injection Attacks in LLMs [62.247841717696765]
大型言語モデル (LLM) は様々なドメインに革命をもたらしたが、インジェクション攻撃に弱いままである。
そこで本研究では,特定の注意点が本来の指示から注入指示へと焦点を移す,注意散逸効果の概念を紹介した。
本研究では,アテンション・トラッカーを提案する。アテンション・トラッカーは,インジェクション・アタックを検出するために,インストラクション上の注意パターンを追跡する訓練不要な検出手法である。
論文 参考訳(メタデータ) (2024-11-01T04:05:59Z) - Detecting and Understanding Vulnerabilities in Language Models via Mechanistic Interpretability [44.99833362998488]
大規模言語モデル(LLM)は、幅広いタスクで素晴らしいパフォーマンスを示している。
特にLSMは敵攻撃に弱いことが知られており、入力に対する非受容的な変更はモデルの出力を誤解させる可能性がある。
本稿では,メカニスティック・インタプリタビリティ(MI)技術に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T09:55:34Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
LVLM(Large Vision-Language Models)は、多モーダルな理解と推論タスクにまたがる顕著な能力を示す。
LVLMの脆弱性は比較的過小評価されており、日々の使用において潜在的なセキュリティリスクを生じさせる。
本稿では,既存のLVLM攻撃の様々な形態について概説する。
論文 参考訳(メタデータ) (2024-07-10T06:57:58Z) - AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models [95.09157454599605]
大規模言語モデル(LLM)はますます強力になってきていますが、それでも顕著ですが微妙な弱点があります。
従来のベンチマークアプローチでは、特定のモデルの欠陥を徹底的に特定することはできない。
さまざまなタスクにまたがるLLMの弱点を自動的に露呈する統合フレームワークであるAutoDetectを導入する。
論文 参考訳(メタデータ) (2024-06-24T15:16:45Z) - Towards Explainable Vulnerability Detection with Large Language Models [17.96542494363619]
ソフトウェア脆弱性は、ソフトウェアシステムのセキュリティと整合性に重大なリスクをもたらす。
大規模言語モデル(LLMs)の出現は、その高度な生成能力による変換ポテンシャルを導入している。
本稿では,脆弱性検出と説明という2つのタスクにLLMを専門化する自動フレームワークであるLLMVulExpを提案する。
論文 参考訳(メタデータ) (2024-06-14T04:01:25Z) - Large Language Models for Cyber Security: A Systematic Literature Review [14.924782327303765]
サイバーセキュリティ(LLM4Security)における大規模言語モデルの適用に関する文献の総合的なレビューを行う。
LLMは、脆弱性検出、マルウェア分析、ネットワーク侵入検出、フィッシング検出など、幅広いサイバーセキュリティタスクに応用されている。
第3に、細調整、転送学習、ドメイン固有の事前トレーニングなど、特定のサイバーセキュリティドメインにLLMを適用するための有望なテクニックをいくつか特定する。
論文 参考訳(メタデータ) (2024-05-08T02:09:17Z) - Can LLMs Understand Computer Networks? Towards a Virtual System Administrator [15.469010487781931]
本稿では,大規模言語モデルによるコンピュータネットワークの理解に関する総合的研究を初めて行った。
我々は,プロプライエタリ(GPT4)とオープンソース(Llama2)モデルを用いたマルチコンピュータネットワーク上でのフレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-04-19T07:41:54Z) - A Survey on Detection of LLMs-Generated Content [97.87912800179531]
LLMの生成する内容を検出する能力が最重要視されている。
既存の検出戦略とベンチマークの詳細な概要を提供する。
また、様々な攻撃から守るための多面的アプローチの必要性を示唆する。
論文 参考訳(メタデータ) (2023-10-24T09:10:26Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
大規模言語モデル(LLM)は、悪意のあるユーザによって悪用された場合、重大な安全性と倫理的リスクをもたらす。
近年,LLM生成テキストを検出し,LLMを保護するアルゴリズムが提案されている。
1) LLMの出力中の特定の単語を, 文脈が与えられたシノニムに置き換えること, 2) 生成者の書き方を変更するための指示プロンプトを自動で検索すること,である。
論文 参考訳(メタデータ) (2023-05-31T10:08:37Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
本稿では,現代大規模言語モデル (LLM) の誤用の可能性について検討する。
本研究は, LLMが効果的な誤情報発生器として機能し, DOQAシステムの性能が著しく低下することを明らかにする。
論文 参考訳(メタデータ) (2023-05-23T04:10:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。