Gaussian Process Regression for Inverse Problems in Linear PDEs
- URL: http://arxiv.org/abs/2502.04276v1
- Date: Thu, 06 Feb 2025 18:20:38 GMT
- Title: Gaussian Process Regression for Inverse Problems in Linear PDEs
- Authors: Xin Li, Markus Lange-Hegermann, Bogdan Raiţă,
- Abstract summary: This paper introduces a computationally efficient algorithm in system theory for solving inverse problems governed by linear partial differential equations (PDEs)
An example application includes identifying the wave speed from noisy data for classical wave equations, which are widely used in physics.
- Score: 7.793266750812356
- License:
- Abstract: This paper introduces a computationally efficient algorithm in system theory for solving inverse problems governed by linear partial differential equations (PDEs). We model solutions of linear PDEs using Gaussian processes with priors defined based on advanced commutative algebra and algebraic analysis. The implementation of these priors is algorithmic and achieved using the Macaulay2 computer algebra software. An example application includes identifying the wave speed from noisy data for classical wave equations, which are widely used in physics. The method achieves high accuracy while enhancing computational efficiency.
Related papers
- WENDy for Nonlinear-in-Parameters ODEs [1.9573380763700712]
The Weak-form Estimation of Non-linear Dynamics (WEN) is extended to accommodate systems of ordinary differential equations that are nonlinear-ins.
We present results on a suite of benchmark systems to demonstrate the practical benefits of our approach.
arXiv Detail & Related papers (2025-02-13T01:40:21Z) - A Deep Learning approach for parametrized and time dependent Partial Differential Equations using Dimensionality Reduction and Neural ODEs [46.685771141109306]
We propose an autoregressive and data-driven method using the analogy with classical numerical solvers for time-dependent, parametric and (typically) nonlinear PDEs.
We show that by leveraging DR we can deliver not only more accurate predictions, but also a considerably lighter and faster Deep Learning model.
arXiv Detail & Related papers (2025-02-12T11:16:15Z) - A Natural Primal-Dual Hybrid Gradient Method for Adversarial Neural Network Training on Solving Partial Differential Equations [9.588717577573684]
We propose a scalable preconditioned primal hybrid gradient algorithm for solving partial differential equations (PDEs)
We compare the performance of the proposed method with several commonly used deep learning algorithms.
The numerical results suggest that the proposed method performs efficiently and robustly and converges more stably.
arXiv Detail & Related papers (2024-11-09T20:39:10Z) - A Physics-Informed Machine Learning Approach for Solving Distributed Order Fractional Differential Equations [0.0]
This paper introduces a novel methodology for solving distributed-order fractional differential equations using a physics-informed machine learning framework.
By embedding the distributed-order functional equation into the SVR framework, we incorporate physical laws directly into the learning process.
The effectiveness of the proposed approach is validated through a series of numerical experiments on Caputo-based distributed-order fractional differential equations.
arXiv Detail & Related papers (2024-09-05T13:20:10Z) - Annealing-based approach to solving partial differential equations [0.0]
Discretizing a PDE yields a system of linear equations.
A general eigenvalue problem can be transformed into an optimization problem.
The proposed algorithm requires iterative computations.
arXiv Detail & Related papers (2024-06-25T08:30:00Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Learning to Solve PDE-constrained Inverse Problems with Graph Networks [51.89325993156204]
In many application domains across science and engineering, we are interested in solving inverse problems with constraints defined by a partial differential equation (PDE)
Here we explore GNNs to solve such PDE-constrained inverse problems.
We demonstrate computational speedups of up to 90x using GNNs compared to principled solvers.
arXiv Detail & Related papers (2022-06-01T18:48:01Z) - Near-Optimal Algorithms for Linear Algebra in the Current Matrix
Multiplication Time [46.31710224483631]
We show how to bypass the main open question of Nelson and Nguyen (FOCS, 2013) regarding the logarithmic factors in the sketching dimension for existing constant factor approximation oblivious subspace embeddings.
A key technique we use is an explicit mapping of Indyk based on uncertainty principles and extractors.
For the fundamental problems of rank computation and finding a linearly independent subset of columns, our algorithms improve Cheung, Kwok, and Lau (JACM, 2013) and are optimal to within a constant factor and a $loglog(n)$-factor, respectively.
arXiv Detail & Related papers (2021-07-16T19:34:10Z) - Photonic co-processors in HPC: using LightOn OPUs for Randomized
Numerical Linear Algebra [53.13961454500934]
We show that the randomization step for dimensionality reduction may itself become the computational bottleneck on traditional hardware.
We show that randomization can be significantly accelerated, at negligible precision loss, in a wide range of important RandNLA algorithms.
arXiv Detail & Related papers (2021-04-29T15:48:52Z) - Linearly Constrained Gaussian Processes with Boundary Conditions [5.33024001730262]
We consider prior knowledge from systems of linear partial differential equations together with their boundary conditions.
We construct multi-output Gaussian process priors with realizations in the solution set of such systems.
arXiv Detail & Related papers (2020-02-03T15:19:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.