Leveraging Geolocation in Clinical Records to Improve Alzheimer's Disease Diagnosis Using DMV Framework
- URL: http://arxiv.org/abs/2502.04288v1
- Date: Thu, 06 Feb 2025 18:33:59 GMT
- Title: Leveraging Geolocation in Clinical Records to Improve Alzheimer's Disease Diagnosis Using DMV Framework
- Authors: Peng Zhang, Divya Chaudhary,
- Abstract summary: Alzheimer's Disease (AD) early detection is critical for enabling timely intervention and improving patient outcomes.
This paper presents a DMV framework using Llama3-70B and GPT-4o as embedding models to analyze clinical notes and predict a continuous risk score associated with early AD onset.
- Score: 3.004788114489393
- License:
- Abstract: Alzheimer's Disease (AD) early detection is critical for enabling timely intervention and improving patient outcomes. This paper presents a DMV framework using Llama3-70B and GPT-4o as embedding models to analyze clinical notes and predict a continuous risk score associated with early AD onset. Framing the task as a regression problem, we model the relationship between linguistic features in clinical notes (inputs) and a target variable (data value) that answers specific questions related to AD risk within certain topic categories. By leveraging a multi-faceted feature set that includes geolocation data, we capture additional environmental context potentially linked to AD. Our results demonstrate that the integration of the geolocation information significantly decreases the error of predicting early AD risk scores over prior models by 28.57% (Llama3-70B) and 33.47% (GPT4-o). Our findings suggest that this combined approach can enhance the predictive accuracy of AD risk assessment, supporting early diagnosis and intervention in clinical settings. Additionally, the framework's ability to incorporate geolocation data provides a more comprehensive risk assessment model that could help healthcare providers better understand and address environmental factors contributing to AD development.
Related papers
- Confidence Estimation for Automatic Detection of Depression and Alzheimer's Disease Based on Clinical Interviews [14.626563022137875]
This paper investigates confidence estimation for automatic detection of Alzheimer's disease (AD) and depression based on clinical interviews.
A novel Bayesian approach is proposed which uses a dynamic Dirichlet prior distribution to model the second-order probability of the predictive distribution.
arXiv Detail & Related papers (2024-07-29T13:18:23Z) - TACCO: Task-guided Co-clustering of Clinical Concepts and Patient Visits for Disease Subtyping based on EHR Data [42.96821770394798]
TACCO is a novel framework that jointly discovers clusters of clinical concepts and patient visits based on a hypergraph modeling of EHR data.
We conduct experiments on the public MIMIC-III dataset and Emory internal CRADLE dataset over the downstream clinical tasks of phenotype classification and cardiovascular risk prediction.
In-depth model analysis, clustering results analysis, and clinical case studies further validate the improved utilities and insightful interpretations delivered by TACCO.
arXiv Detail & Related papers (2024-06-14T14:18:38Z) - Feasibility of Identifying Factors Related to Alzheimer's Disease and
Related Dementia in Real-World Data [56.7069469207376]
In total, we extracted 477 risk factors in 10 categories from 537 studies.
Genetic testing for AD/ADRD is still not a common practice and is poorly documented in both structured and unstructured EHRs.
Considering the constantly evolving research on AD/ADRD risk factors, literature mining via NLP methods offers a solution to automatically update our knowledge map.
arXiv Detail & Related papers (2024-02-03T18:17:19Z) - An AI-Guided Data Centric Strategy to Detect and Mitigate Biases in
Healthcare Datasets [32.25265709333831]
We generate a data-centric, model-agnostic, task-agnostic approach to evaluate dataset bias by investigating the relationship between how easily different groups are learned at small sample sizes (AEquity)
We then apply a systematic analysis of AEq values across subpopulations to identify and manifestations of racial bias in two known cases in healthcare.
AEq is a novel and broadly applicable metric that can be applied to advance equity by diagnosing and remediating bias in healthcare datasets.
arXiv Detail & Related papers (2023-11-06T17:08:41Z) - Self-explainable Graph Neural Network for Alzheimer's Disease And Related Dementias Risk Prediction [5.601973265501243]
Alzheimer's disease and related dementias (ADRD) ranks as the sixth leading cause of death in the US.
Merging machine learning with claims data can reveal additional risk factors and interconnections among diverse medical codes.
arXiv Detail & Related papers (2023-09-12T20:12:08Z) - AI Framework for Early Diagnosis of Coronary Artery Disease: An
Integration of Borderline SMOTE, Autoencoders and Convolutional Neural
Networks Approach [0.44998333629984877]
We develop a methodology for balancing and augmenting data for more accurate prediction when the data is imbalanced and the sample size is small.
The experimental results revealed that the average accuracy of our proposed method for CAD prediction was 95.36, and was higher than random forest (RF), decision tree (DT), support vector machine (SVM), logistic regression (LR), and artificial neural network (ANN)
arXiv Detail & Related papers (2023-08-29T14:33:38Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
Speech based automatic AD screening systems provide a non-intrusive and more scalable alternative to other clinical screening techniques.
Scarcity of specialist data leads to uncertainty in both model selection and feature learning when developing such systems.
This paper investigates the use of feature and model combination approaches to improve the robustness of domain fine-tuning of BERT and Roberta pre-trained text encoders.
arXiv Detail & Related papers (2022-06-28T05:09:01Z) - Unsupervised Domain Adaptation for Dysarthric Speech Detection via
Domain Adversarial Training and Mutual Information Minimization [52.82138296332476]
This paper makes a first attempt to formulate cross-domain Dysarthric speech detection (DSD) as an unsupervised domain adaptation problem.
We propose a multi-task learning strategy, including dysarthria presence classification (DPC), domain adversarial training ( DAT) and mutual information minimization (MIM)
Experiments show that the incorporation of UDA attains absolute increases of 22.2% and 20.0% respectively in utterance-level weighted average recall and speaker-level accuracy.
arXiv Detail & Related papers (2021-06-18T13:34:36Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.