Prediction-Powered E-Values
- URL: http://arxiv.org/abs/2502.04294v1
- Date: Thu, 06 Feb 2025 18:36:01 GMT
- Title: Prediction-Powered E-Values
- Authors: Daniel Csillag, Claudio José Struchiner, Guilherme Tegoni Goedert,
- Abstract summary: We apply ideas of prediction-powered inference to e-values.
We show that every inference procedure that can be framed in terms of e-values has a prediction-powered counterpart.
Our approach is modular and easily integrable into existing algorithms.
- Score: 0.66567375919026
- License:
- Abstract: Quality statistical inference requires a sufficient amount of data, which can be missing or hard to obtain. To this end, prediction-powered inference has risen as a promising methodology, but existing approaches are largely limited to Z-estimation problems such as inference of means and quantiles. In this paper, we apply ideas of prediction-powered inference to e-values. By doing so, we inherit all the usual benefits of e-values -- such as anytime-validity, post-hoc validity and versatile sequential inference -- as well as greatly expand the set of inferences achievable in a prediction-powered manner. In particular, we show that every inference procedure that can be framed in terms of e-values has a prediction-powered counterpart, given by our method. We showcase the effectiveness of our framework across a wide range of inference tasks, from simple hypothesis testing and confidence intervals to more involved procedures for change-point detection and causal discovery, which were out of reach of previous techniques. Our approach is modular and easily integrable into existing algorithms, making it a compelling choice for practical applications.
Related papers
- Conformal Inference of Individual Treatment Effects Using Conditional Density Estimates [3.7307776333361122]
Current state-of-the-art approaches, while providing valid prediction intervals, often yield overly conservative prediction intervals.
In this work, we introduce a conformal inference approach to ITE using the conditional density of the outcome.
We show that our prediction intervals are not only marginally valid but are narrower than existing methods.
arXiv Detail & Related papers (2025-01-24T21:46:37Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Conformal Counterfactual Inference under Hidden Confounding [19.190396053530417]
Predicting potential outcomes along with its uncertainty in a counterfactual world poses the foundamental challenge in causal inference.
Existing methods that construct confidence intervals for counterfactuals either rely on the assumption of strong ignorability.
We propose a novel approach based on transductive weighted conformal prediction, which provides confidence intervals for counterfactual outcomes with marginal converage guarantees.
arXiv Detail & Related papers (2024-05-20T21:43:43Z) - Efficient Conformal Prediction under Data Heterogeneity [79.35418041861327]
Conformal Prediction (CP) stands out as a robust framework for uncertainty quantification.
Existing approaches for tackling non-exchangeability lead to methods that are not computable beyond the simplest examples.
This work introduces a new efficient approach to CP that produces provably valid confidence sets for fairly general non-exchangeable data distributions.
arXiv Detail & Related papers (2023-12-25T20:02:51Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Conformal Off-Policy Prediction in Contextual Bandits [54.67508891852636]
Conformal off-policy prediction can output reliable predictive intervals for the outcome under a new target policy.
We provide theoretical finite-sample guarantees without making any additional assumptions beyond the standard contextual bandit setup.
arXiv Detail & Related papers (2022-06-09T10:39:33Z) - Predictive Inference with Weak Supervision [3.1925030748447747]
We bridge the gap between partial supervision and validation by developing a conformal prediction framework.
We introduce a new notion of coverage and predictive validity, then develop several application scenarios.
We corroborate the hypothesis that the new coverage definition allows for tighter and more informative (but valid) confidence sets.
arXiv Detail & Related papers (2022-01-20T17:26:52Z) - CoinDICE: Off-Policy Confidence Interval Estimation [107.86876722777535]
We study high-confidence behavior-agnostic off-policy evaluation in reinforcement learning.
We show in a variety of benchmarks that the confidence interval estimates are tighter and more accurate than existing methods.
arXiv Detail & Related papers (2020-10-22T12:39:11Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
We show that effective estimation can still be achieved in important applications.
Our approach is based on estimating a ratio that corrects for the discrepancy between the stationary and empirical distributions.
The resulting algorithm, GenDICE, is straightforward and effective.
arXiv Detail & Related papers (2020-02-21T00:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.