論文の概要: HOG-Diff: Higher-Order Guided Diffusion for Graph Generation
- arxiv url: http://arxiv.org/abs/2502.04308v1
- Date: Thu, 06 Feb 2025 18:51:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:33:18.434673
- Title: HOG-Diff: Higher-Order Guided Diffusion for Graph Generation
- Title(参考訳): HOG-Diff:グラフ生成のための高次誘導拡散
- Authors: Yiming Huang, Tolga Birdal,
- Abstract要約: グラフ生成は、複雑な非ユークリッド構造を深く理解する必要があるため、重要な課題である。
本稿では,高次情報を用いた高次誘導拡散モデルを提案する。
我々のモデルは古典的な拡散フレームワークよりも強力な理論的保証を示す。
- 参考スコア(独自算出の注目度): 16.879154374481235
- License:
- Abstract: Graph generation is a critical yet challenging task as empirical analyses require a deep understanding of complex, non-Euclidean structures. Although diffusion models have recently made significant achievements in graph generation, these models typically adapt from the frameworks designed for image generation, making them ill-suited for capturing the topological properties of graphs. In this work, we propose a novel Higher-order Guided Diffusion (HOG-Diff) model that follows a coarse-to-fine generation curriculum and is guided by higher-order information, enabling the progressive generation of plausible graphs with inherent topological structures. We further prove that our model exhibits a stronger theoretical guarantee than classical diffusion frameworks. Extensive experiments on both molecular and generic graph generation tasks demonstrate that our method consistently outperforms or remains competitive with state-of-the-art baselines. Our code is available at https://github.com/Yiminghh/HOG-Diff.
- Abstract(参考訳): グラフ生成は、複雑な非ユークリッド構造を深く理解する必要があるため、重要な課題である。
拡散モデルは近年、グラフ生成において重要な成果を上げているが、これらのモデルは通常、画像生成用に設計されたフレームワークから適応し、グラフの位相特性を捉えるのに不適である。
本研究では,粗大な生成カリキュラムに従って高次誘導拡散(HOG-Diff)モデルを提案する。
さらに、我々のモデルは古典的な拡散フレームワークよりも理論的な保証が強いことを証明している。
分子グラフ生成タスクとジェネリックグラフ生成タスクの広範な実験は、我々の手法が最先端のベースラインと一貫して優れているか、競争していることを示す。
私たちのコードはhttps://github.com/Yiminghh/HOG-Diff.comで公開されています。
関連論文リスト
- SeaDAG: Semi-autoregressive Diffusion for Conditional Directed Acyclic Graph Generation [83.52157311471693]
方向性非巡回グラフ(DAG)の条件生成のための半自己回帰拡散モデルSeaDAGを紹介する。
グローバルグラフ構造を欠いた従来の自己回帰生成とは異なり,本手法は拡散ステップ毎に完全なグラフ構造を保持する。
本研究では,現実的なDAGを生成する拡散モデルの能力を高めるために,条件損失を伴うグラフ条件学習を明示的に訓練する。
論文 参考訳(メタデータ) (2024-10-21T15:47:03Z) - IFH: a Diffusion Framework for Flexible Design of Graph Generative Models [53.219279193440734]
グラフ生成モデルは,1行にグラフを生成するワンショットモデルと,ノードとエッジの連続的な付加によるグラフを生成するシーケンシャルモデルという,2つの顕著なファミリーに分類される。
本稿では,逐次度を規定するグラフ生成モデルであるInsert-Fill-Halt(IFH)を提案する。
論文 参考訳(メタデータ) (2024-08-23T16:24:40Z) - Advancing Graph Generation through Beta Diffusion [49.49740940068255]
Graph Beta Diffusion (GBD)は、グラフデータの多様な性質を扱うために特別に設計された生成モデルである。
本稿では, 臨界グラフトポロジを安定化させることにより, 生成グラフの現実性を高める変調手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T17:42:57Z) - GraphRCG: Self-Conditioned Graph Generation [78.69810678803248]
本稿では,グラフ分布を明示的にモデル化する自己条件付きグラフ生成フレームワークを提案する。
本フレームワークは, 既存のグラフ生成手法に比べて, 学習データに対するグラフ品質と忠実度において優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-02T02:28:20Z) - Hyperbolic Graph Diffusion Model [24.049660417511074]
双曲グラフ拡散モデル(HGDM)と呼ばれる新しいグラフ生成法を提案する。
HGDMは、ノードを連続した双曲埋め込みにエンコードするオートエンコーダと、双曲潜在空間で動作するDMで構成される。
実験により、HGDMはグラフおよび分子生成ベンチマークにおいて、高度に階層的な構造を持つグラフ生成の品質を48%向上させることで、より良い性能を実現することが示された。
論文 参考訳(メタデータ) (2023-06-13T08:22:18Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
グラフの生成は、非ユークリッド構造の複雑な性質を理解する必要がある実世界のタスクにとって大きな課題である。
本稿では,拡散過程の最終グラフ構造を明示的に学習することにより,グラフのトポロジーをモデル化する生成フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-07T17:07:46Z) - Generative Diffusion Models on Graphs: Methods and Applications [50.44334458963234]
拡散モデルは、新しい生成パラダイムとして、様々な画像生成タスクにおいて顕著な成功を収めた。
グラフ生成は多くの実世界のアプリケーションを持つグラフ上で重要な計算タスクである。
論文 参考訳(メタデータ) (2023-02-06T06:58:17Z) - Conditional Diffusion Based on Discrete Graph Structures for Molecular
Graph Generation [32.66694406638287]
分子グラフ生成のための離散グラフ構造(CDGS)に基づく条件拡散モデルを提案する。
具体的には、微分方程式(SDE)を用いて、グラフ構造と固有の特徴の両方に対して前方グラフ拡散過程を構築する。
本稿では,中間グラフ状態からグローバルコンテキストと局所ノードエッジ依存性を抽出する,特殊なハイブリッドグラフノイズ予測モデルを提案する。
論文 参考訳(メタデータ) (2023-01-01T15:24:15Z) - SCGG: A Deep Structure-Conditioned Graph Generative Model [9.046174529859524]
SCGGと呼ばれる条件付きディープグラフ生成法は、特定のタイプの構造条件を考える。
SCGGのアーキテクチャは、グラフ表現学習ネットワークと、エンドツーエンドで訓練された自己回帰生成モデルで構成されている。
合成と実世界の両方のデータセットに対する実験結果は,最先端のベースラインと比較して,本手法の優位性を示している。
論文 参考訳(メタデータ) (2022-09-20T12:33:50Z) - A Systematic Survey on Deep Generative Models for Graph Generation [16.546379779385575]
グラフ生成は与えられたグラフの分布を学習し、より新しいグラフを生成する。
グラフ生成のための深部生成モデルの最近の進歩は、生成されたグラフの忠実性を改善するための重要なステップである。
本稿では,グラフ生成のための深部生成モデル分野における文献の概要について概説する。
論文 参考訳(メタデータ) (2020-07-13T20:56:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。