Tutorial on Using Machine Learning and Deep Learning Models for Mental Illness Detection
- URL: http://arxiv.org/abs/2502.04342v1
- Date: Mon, 03 Feb 2025 06:43:12 GMT
- Title: Tutorial on Using Machine Learning and Deep Learning Models for Mental Illness Detection
- Authors: Yeyubei Zhang, Zhongyan Wang, Zhanyi Ding, Yexin Tian, Jianglai Dai, Xiaorui Shen, Yunchong Liu, Yuchen Cao,
- Abstract summary: This tutorial provides guidance to address common challenges in applying machine learning and deep learning methods for mental health detection on social media.
Real-world examples and step-by-step instructions demonstrate how to apply these techniques effectively.
By sharing these approaches, this tutorial aims to help researchers build more reliable and widely applicable models for mental health research.
- Score: 0.036136619420474754
- License:
- Abstract: Social media has become an important source for understanding mental health, providing researchers with a way to detect conditions like depression from user-generated posts. This tutorial provides practical guidance to address common challenges in applying machine learning and deep learning methods for mental health detection on these platforms. It focuses on strategies for working with diverse datasets, improving text preprocessing, and addressing issues such as imbalanced data and model evaluation. Real-world examples and step-by-step instructions demonstrate how to apply these techniques effectively, with an emphasis on transparency, reproducibility, and ethical considerations. By sharing these approaches, this tutorial aims to help researchers build more reliable and widely applicable models for mental health research, contributing to better tools for early detection and intervention.
Related papers
- Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
Mental illness is a widespread and debilitating condition with substantial societal and personal costs.
Recent advances in Artificial Intelligence (AI) hold great potential for recognizing and addressing conditions such as depression, anxiety disorder, bipolar disorder, schizophrenia, and post-traumatic stress disorder.
Privacy concerns, including the risk of sensitive data leakage from datasets and trained models, remain a critical barrier to deploying these AI systems in real-world clinical settings.
arXiv Detail & Related papers (2025-02-01T15:10:02Z) - Are LLMs effective psychological assessors? Leveraging adaptive RAG for interpretable mental health screening through psychometric practice [2.9775344067885974]
We propose a novel adaptive Retrieval-Augmented Generation (RAG) approach that completes psychological questionnaires by analyzing social media posts.
Our method retrieves the most relevant user posts for each question in a psychological survey and uses Large Language Models (LLMs) to predict questionnaire scores in a zero-shot setting.
arXiv Detail & Related papers (2025-01-02T00:01:54Z) - Understanding Student Sentiment on Mental Health Support in Colleges Using Large Language Models [5.3204794327005205]
This paper uses public Student Voice Survey data to analyze student sentiments on mental health support with large language models (LLMs)
The investigation of both traditional machine learning methods and state-of-the-art LLMs showed the best performance of GPT-3.5 and BERT on this new dataset.
arXiv Detail & Related papers (2024-11-18T02:53:15Z) - SouLLMate: An Application Enhancing Diverse Mental Health Support with Adaptive LLMs, Prompt Engineering, and RAG Techniques [9.146311285410631]
Mental health issues significantly impact individuals' daily lives, yet many do not receive the help they need even with available online resources.
This study aims to provide diverse, accessible, stigma-free, personalized, and real-time mental health support through cutting-edge AI technologies.
arXiv Detail & Related papers (2024-10-17T22:04:32Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods.
By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models.
arXiv Detail & Related papers (2024-07-07T18:02:00Z) - Explainable AI for Mental Disorder Detection via Social Media: A survey and outlook [0.7689629183085726]
We conduct a thorough survey to explore the intersection of data science, artificial intelligence, and mental healthcare.
A significant portion of the population actively engages in online social media platforms, creating a vast repository of personal data.
The paper navigates through traditional diagnostic methods, state-of-the-art data- and AI-driven research studies, and the emergence of explainable AI (XAI) models for mental healthcare.
arXiv Detail & Related papers (2024-06-10T02:51:16Z) - EmoScan: Automatic Screening of Depression Symptoms in Romanized Sinhala Tweets [0.0]
This work explores the utilization of Romanized Sinhala social media data to identify individuals at risk of depression.
A machine learning-based framework is presented for the automatic screening of depression symptoms by analyzing language patterns, sentiment, and behavioural cues.
arXiv Detail & Related papers (2024-03-28T10:31:09Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
Both politics and pandemics have recently provided ample motivation for the development of machine learning-enabled disinformation (a.k.a. fake news) detection algorithms.
Existing literature has focused primarily on the fully-automated case, but the resulting techniques cannot reliably detect disinformation on the varied topics, sources, and time scales required for military applications.
By leveraging an already-available analyst as a human-in-the-loop, canonical machine learning techniques of sentiment analysis, aspect-based sentiment analysis, and stance detection become plausible methods to use for a partially-automated disinformation detection system.
arXiv Detail & Related papers (2021-11-09T13:30:34Z) - Hierarchical Learning Using Deep Optimum-Path Forest [55.60116686945561]
Bag-of-Visual Words (BoVW) and deep learning techniques have been widely used in several domains, which include computer-assisted medical diagnoses.
In this work, we are interested in developing tools for the automatic identification of Parkinson's disease using machine learning and the concept of BoVW.
arXiv Detail & Related papers (2021-02-18T13:02:40Z) - Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory
to Learning Algorithms [91.3755431537592]
We analyze four broad meta-learning strategies which rely on plug-in estimation and pseudo-outcome regression.
We highlight how this theoretical reasoning can be used to guide principled algorithm design and translate our analyses into practice.
arXiv Detail & Related papers (2021-01-26T17:11:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.