論文の概要: Investigating the Robustness of Deductive Reasoning with Large Language Models
- arxiv url: http://arxiv.org/abs/2502.04352v1
- Date: Tue, 04 Feb 2025 17:16:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:58:34.734599
- Title: Investigating the Robustness of Deductive Reasoning with Large Language Models
- Title(参考訳): 大規模言語モデルを用いた帰納的推論のロバスト性の検討
- Authors: Fabian Hoppe, Filip Ilievski, Jan-Christoph Kalo,
- Abstract要約: 大規模言語モデル(LLM)は多くの推論に基づく自然言語処理(NLP)タスクにおいて印象的な結果が得られることが示されている。
LLMが、非公式および自己形式化の両方の手法で、どの程度論理的推論タスクに頑健であるかは、まだ不明である。
- 参考スコア(独自算出の注目度): 7.494617747914778
- License:
- Abstract: Large Language Models (LLMs) have been shown to achieve impressive results for many reasoning-based Natural Language Processing (NLP) tasks, suggesting a degree of deductive reasoning capability. However, it remains unclear to which extent LLMs, in both informal and autoformalisation methods, are robust on logical deduction tasks. Moreover, while many LLM-based deduction methods have been proposed, there is a lack of a systematic study that analyses the impact of their design components. Addressing these two challenges, we propose the first study of the robustness of LLM-based deductive reasoning methods. We devise a framework with two families of perturbations: adversarial noise and counterfactual statements, which jointly generate seven perturbed datasets. We organize the landscape of LLM reasoners according to their reasoning format, formalisation syntax, and feedback for error recovery. The results show that adversarial noise affects autoformalisation, while counterfactual statements influence all approaches. Detailed feedback does not improve overall accuracy despite reducing syntax errors, pointing to the challenge of LLM-based methods to self-correct effectively.
- Abstract(参考訳): 大規模言語モデル(LLM)は多くの推論に基づく自然言語処理(NLP)タスクにおいて印象的な結果が得られることが示されている。
しかし, LLMが, 形式的, 自己形式的いずれにおいても, 論理的推論タスクに頑健であるかは, 明らかでない。
さらに, LLMに基づく推論手法が数多く提案されているが, 設計要素の影響を解析する体系的な研究は乏しい。
これら2つの課題に対処し, LLMに基づく推論手法の堅牢性に関する最初の研究を提案する。
我々は、敵対的ノイズと反現実的ステートメントという、摂動の2つのファミリーを持つ枠組みを考案し、7つの摂動データセットを共同で生成する。
我々は, LLM推論のランドスケープを, その推論形式, 形式化構文, エラー回復のためのフィードバックに従って整理する。
その結果, 対向雑音は自己形式化に影響を及ぼし, 反実的主張は全てのアプローチに影響を及ぼすことがわかった。
詳細なフィードバックは、構文エラーを減らしたにもかかわらず全体的な精度を向上しない。
関連論文リスト
- Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs [12.48241058167222]
大規模言語モデル(LLM)は、人間の指示に基づいて様々なタスクに取り組む際に、顕著な効率性を示した。
しかし、数学や物理学の限界など、推論を必要とするタスクに苦しむことが研究によって明らかになっている。
このことは、LLMが組み込み知識を本当に理解しているか、それとも、コンテンツに対する真の理解なしにトークン分布を複製することを学ぶだけなのかという疑問を提起する。
モデルの推論能力を高めるために,新しいパラメータ効率細調整法であるDecon Causal Adaptation (DCA)を提案する。
論文 参考訳(メタデータ) (2024-09-04T13:17:09Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Inductive Learning of Logical Theories with LLMs: An Expressivity-Graded Analysis [9.865771016218549]
本研究は,Large Language Models(LLM)の機能と限界を分析するための,新しい体系的方法論を提案する。
この分析は、LLM性能に関する特定の推論課題の定量化を可能にする、複雑性グレードのw.r.t.ルール依存構造である。
論文 参考訳(メタデータ) (2024-08-15T16:41:00Z) - Resilience of Large Language Models for Noisy Instructions [38.25524275497566]
大規模言語モデル(LLM)は、ヒューマンコマンドを解釈し、様々なタスク間でテキストを生成する強力なツールとして登場した。
本研究では, ASR(Automatic Speech Recognition)エラー, OCR(Optical Character Recognition)エラー, 文法的誤り, 気まぐれな内容を含む5種類の障害に対するLLMのレジリエンスについて検討した。
以上の結果から,一部のLCMは特定の騒音に対する耐性を示すが,全体的な性能は著しく低下することが明らかとなった。
論文 参考訳(メタデータ) (2024-04-15T12:55:08Z) - Causal Prompting: Debiasing Large Language Model Prompting based on Front-Door Adjustment [32.12998469814097]
大規模言語モデル(LLM)のバイアスを効果的に軽減するために,正面調整に基づく新たな因果的プロンプト手法を提案する。
実験結果から,提案手法は7つの自然言語処理データセットにおいて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-03-05T07:47:34Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
大規模言語モデル(LLM)の画期的な能力として、文脈内学習が登場している。
両タイプの不確かさを定量化するための新しい定式化法とそれに対応する推定法を提案する。
提案手法は、プラグイン・アンド・プレイ方式でコンテキスト内学習の予測を理解するための教師なしの方法を提供する。
論文 参考訳(メタデータ) (2024-02-15T18:46:24Z) - Large Language Models as an Indirect Reasoner: Contrapositive and Contradiction for Automated Reasoning [74.90592233107712]
本稿では,直接推論 (DR) と間接推論 (IR) を並列な複数の推論経路として考慮し,最終解を導出する直接間接推論 (DIR) 手法を提案する。
我々のDIR法は単純だが有効であり、既存のCoT法と簡単に統合できる。
論文 参考訳(メタデータ) (2024-02-06T03:41:12Z) - LLMs for Relational Reasoning: How Far are We? [8.840750655261251]
大規模言語モデル(LLM)は、下流タスクで最先端のパフォーマンスを達成することで、多くの領域に革命をもたらした。
近年の取り組みにより,LSMは逐次決定問題の解決に乏しいことが示されている。
論文 参考訳(メタデータ) (2024-01-17T08:22:52Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。