Division-of-Thoughts: Harnessing Hybrid Language Model Synergy for Efficient On-Device Agents
- URL: http://arxiv.org/abs/2502.04392v1
- Date: Thu, 06 Feb 2025 02:40:25 GMT
- Title: Division-of-Thoughts: Harnessing Hybrid Language Model Synergy for Efficient On-Device Agents
- Authors: Chenyang Shao, Xinyuan Hu, Yutang Lin, Fengli Xu,
- Abstract summary: Division-of-Thoughts (DoT) is a collaborative reasoning framework leveraging the synergy between local and cloud-based language models.
DoT reduces the average reasoning time and API costs by 66.12% and 83.57%, while achieving comparable reasoning accuracy with the best baseline methods.
- Score: 5.566936703366701
- License:
- Abstract: The rapid expansion of web content has made on-device AI assistants indispensable for helping users manage the increasing complexity of online tasks. The emergent reasoning ability in large language models offer a promising path for next-generation on-device AI agents. However, deploying full-scale Large Language Models (LLMs) on resource-limited local devices is challenging. In this paper, we propose Division-of-Thoughts (DoT), a collaborative reasoning framework leveraging the synergy between locally deployed Smaller-scale Language Models (SLMs) and cloud-based LLMs. DoT leverages a Task Decomposer to elicit the inherent planning abilities in language models to decompose user queries into smaller sub-tasks, which allows hybrid language models to fully exploit their respective strengths. Besides, DoT employs a Task Scheduler to analyze the pair-wise dependency of sub-tasks and create a dependency graph, facilitating parallel reasoning of sub-tasks and the identification of key steps. To allocate the appropriate model based on the difficulty of sub-tasks, DoT leverages a Plug-and-Play Adapter, which is an additional task head attached to the SLM that does not alter the SLM's parameters. To boost adapter's task allocation capability, we propose a self-reinforced training method that relies solely on task execution feedback. Extensive experiments on various benchmarks demonstrate that our DoT significantly reduces LLM costs while maintaining competitive reasoning accuracy. Specifically, DoT reduces the average reasoning time and API costs by 66.12% and 83.57%, while achieving comparable reasoning accuracy with the best baseline methods.
Related papers
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.
However, they still struggle with problems requiring multi-step decision-making and environmental feedback.
We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Pre-trained Language Models Improve the Few-shot Prompt Ability of Decision Transformer [10.338170161831496]
Decision Transformer (DT) has emerged as a promising class of algorithms in offline reinforcement learning (RL) tasks.
We introduce the Language model-d Prompt Transformer (LPDT), which leverages pre-trained language models for meta-RL tasks and fine-tunes the model using Low-rank Adaptation (LoRA)
Our approach integrates pre-trained language model and RL tasks seamlessly.
arXiv Detail & Related papers (2024-08-02T17:25:34Z) - From Instance Training to Instruction Learning: Task Adapters Generation from Instructions [29.452006810725184]
This paper focuses on simulating human learning to address the shortcomings of instance training.
We introduce Task Adapters Generation from Instructions (TAGI), which automatically constructs the task-specific model.
We evaluate TAGI on the Super-Natural Instructions and P3 datasets.
arXiv Detail & Related papers (2024-06-18T08:14:28Z) - MetaGPT: Merging Large Language Models Using Model Exclusive Task Arithmetic [6.46176287368784]
We propose textbfModel textbfExclusive textbfTask textbfArithmetic for merging textbfGPT-scale models.
Our proposed MetaGPT is data-agnostic and bypasses the heavy search process, making it cost-effective and easy to implement for LLMs.
arXiv Detail & Related papers (2024-06-17T10:12:45Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Plan, Eliminate, and Track -- Language Models are Good Teachers for
Embodied Agents [99.17668730578586]
Pre-trained large language models (LLMs) capture procedural knowledge about the world.
Plan, Eliminate, and Track (PET) framework translates a task description into a list of high-level sub-tasks.
PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.
arXiv Detail & Related papers (2023-05-03T20:11:22Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing (TAPS) is a method for tuning a base model to a new task by adaptively modifying a small, task-specific subset of layers.
Compared to other methods, TAPS retains high accuracy on downstream tasks while introducing few task-specific parameters.
We evaluate our method on a suite of fine-tuning tasks and architectures (ResNet, DenseNet, ViT) and show that it achieves state-of-the-art performance while being simple to implement.
arXiv Detail & Related papers (2022-03-30T23:16:07Z) - Meta Reinforcement Learning with Autonomous Inference of Subtask
Dependencies [57.27944046925876]
We propose and address a novel few-shot RL problem, where a task is characterized by a subtask graph.
Instead of directly learning a meta-policy, we develop a Meta-learner with Subtask Graph Inference.
Our experiment results on two grid-world domains and StarCraft II environments show that the proposed method is able to accurately infer the latent task parameter.
arXiv Detail & Related papers (2020-01-01T17:34:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.